Answer:
The first part can be solved via conservation of energy.

For the second part,
the free body diagram of the car should be as follows:
- weight in the downwards direction
- normal force of the track to the car in the downwards direction
The total force should be equal to the centripetal force by Newton's Second Law.

where
because we are looking for the case where the car loses contact.

Now we know the minimum velocity that the car should have. Using the energy conservation found in the first part, we can calculate the minimum height.

Explanation:
The point that might confuse you in this question is the direction of the normal force at the top of the loop.
We usually use the normal force opposite to the weight. However, normal force is the force that the road exerts on us. Imagine that the car goes through the loop very very fast. Its tires will feel a great amount of normal force, if its velocity is quite high. By the same logic, if its velocity is too low, it might not feel a normal force at all, which means losing contact with the track.
Answer:
Ans= 9
See attached picture for clearer solution.
Explanation:
The net electrostatic force acting on charge A = 2/ 2 + 2 /(2) 2 − 2 /(3) 2 = 2 / 2 (1 + 1/4 – 1/9 ) = 41/36 2/2 .
The net electrostatic force acting on charge B = 2/2 + 2/(2)2 − 2/2 = 1/4 2/d2 .
The net electrostatic force acting on charge C = 2/2 + 2/(2)2 + 2/2 = 2/2 (1 + 1 4 + 1) = 9/4 2/2 .
The net electrostatic force acting on charge D = 2/2+ 2 /(2)2 + 2/(3)2 = 2 /2 (1 + 1/4 + 1/9 ) = 49/36 2/ 2 .
The ratio of the largest to the smallest net force = 9/4*2/2 / 1/4 2/2 . = 9
Answer:
78840
Explanation:
Google gets the answer quicker btw
Radioactive element
I. E..,ratio of neutrons is to protons is greater than 1.5
Answer:
a. The capacitance of the capacitor, C.
Explanation:
Applying Gauss´Law to a closed surface enclosing one of the capacitor plates, it can be showed that the capacitance of a parallel plates capacitor, depends only on his geometry and the dielectric material between plates, as follows:
C = εo A / d, where d is the distance between plates.
If d is reduced to d/2, we can see that it produces as a net effect, to double the capacitance value.