1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex73 [517]
3 years ago
13

Can someone plz help me DUE TOMORROW

Physics
1 answer:
aksik [14]3 years ago
3 0
Hey the answer to the question is
m = 0.40
You might be interested in
An electron moving to the left at 0.8c collides with a photon moving to the right. After the collision, the electron is moving t
SVETLANKA909090 [29]

Answer:

Wavelength = 2.91 x 10⁻¹² m, Energy = 6.8 x 10⁻¹⁴

Explanation:

In order to show that a free electron can’t completely absorb a photon, the equation for relativistic energy and momentum will be needed, along the equation for the energy and momentum of a photon. The conservation of energy and momentum will also be used.

E = y(u) mc²

Here c is the speed of light in vacuum and y(u) is the Lorentz factor

y(u) = 1/√[1-(u/c)²], where u is the velocity of the particle

The relativistic momentum p of an object of mass m and velocity u is given by

p = y(u)mu

Here y(u) being the Lorentz factor

The energy E of a photon of wavelength λ is

E = hc/λ, where h is the Planck’s constant 6.6 x 10⁻³⁴ J.s and c being the speed of light in vacuum 3 x 108m/s

The momentum p of a photon of wavelenght λ is,

P = h/λ

If the electron is moving, it will start the interaction with some momentum and energy already. Momentum of the electron and photon in the initial and final state is

p(pi) + p(ei) = p(pf) + p(ef), equation 1, where p refers to momentum and the e and p in the brackets refer to proton and electron respectively

The momentum of the photon in the initial state is,

p(pi) = h/λ(i)

The momentum of the electron in the initial state is,

p(ei) = y(i)mu(i)

The momentum of the electron in the final state is

p(ef) = y(f)mu(f)

Since the electron starts off going in the negative direction, that momentum will be negative, along with the photon’s momentum after the collision

Rearranging the equation 1 , we get

p(pi) – p(ei) = -p(pf) +p(ef)

Substitute h/λ(i) for p(pi) , h/λ(f) for p(pf) , y(i)mu(i) for p(ei), y(f)mu(f) for p(ef) in the equation 1 and solve

h/λ(i) – y(i)mu(i) = -h/λ(f) – y(f)mu(f), equation 2

Next write out the energy conservation equation and expand it

E(pi) + E(ei) = E(pf) + E(ei)

Kinetic energy of the electron and photon in the initial state is

E(p) + E(ei) = E(ef), equation 3

The energy of the electron in the initial state is

E(pi) = hc/λ(i)

The energy of the electron in the final state is

E(pf) = hc/λ(f)

Energy of the photon in the initial state is

E(ei) = y(i)mc2, where y(i) is the frequency of the photon int the initial state

Energy of the electron in the final state is

E(ef) = y(f)mc2

Substitute hc/λ(i) for E(pi), hc/λ(f) for E(pf), y(i)mc² for E(ei) and y(f)mc² for E(ef) in equation 3

Hc/λ(i) + y(i)mc² = hc/λ(f) + y(f)mc², equation 4

Solve the equation for h/λ(f)

h/λ(i) + y(i)mc = h/λ(f) + y(f)mc

h/λ(f) = h/lmda(i) + (y(i) – y(f)c)m

Substitute h/λ(i) + (y(i) – y(f)c)m for h/λ(f)  in equation 2 and solve

h/λ(i) -y(i)mu(i) = -h/λ(f) + y(f)mu(f)

h/λ(i) -y(i)mu(i) = -h/λ(i) + (y(f) – y(i))mc + y(f)mu(f)

Rearrange to get all λ(i) terms on one side, we get

2h/λ(i) = m[y(i)u(i) +y(f)u(f) + (y(f) – y(i)c)]

λ(i) = 2h/[m{y(i)u(i) + y(f)u(f) + (y(f) – y(i))c}]

λ(i) = 2h/[m.c{y(i)(u(i)/c) + y(f)(u(f)/c) + (y(f) – y(i))}]

Calculate the Lorentz factor using u(i) = 0.8c for y(i) and u(i) = 0.6c for y(f)

y(i) = 1/[√[1 – (0.8c/c)²] = 5/3

y(f) = 1/√[1 – (0.6c/c)²] = 1.25

Substitute 6.63 x 10⁻³⁴ J.s for h, 0.511eV/c2 = 9.11 x 10⁻³¹ kg for m, 5/3 for y(i), 0.8c for u(i), 1.25 for y(f), 0.6c for u(f), and 3 x 10⁸ m/s for c in the equation derived for λ(i)

λ(i) = 2h/[m.c{y(i)(u(i)/c) + y(f)(u(f)/c) + (y(f) – y(i))}]

λ(i) = 2(6.63 x 10-34)/[(9.11 x 10-31)(3 x 108){(5/3)(0.8) + (1.25)(0.6) + ((1.25) – (5/3))}]

λ(i) = 2.91 x 10⁻¹² m

So, the initial wavelength of the photon was 2.91 x 10-12 m

Energy of the incoming photon is

E(pi) = hc/λ(i)

E(pi) = (6.63 x 10⁻³⁴)(3 x 10⁸)/(2.911 x 10⁻¹²) = 6.833 x 10⁻¹⁴ = 6.8 x 10⁻¹⁴

So the energy of the photon is 6.8 x 10⁻¹⁴ J

6 0
3 years ago
A 4.00-m-long, 470 kg steel beam extends horizontally from the point where it has been bolted to the framework of a new building
adell [148]

Answer:

12164.4 Nm

Explanation:

CHECK THE ATTACHMENT

Given values are;

m1= 470 kg

x= 4m

m2= 75kg

Cm = center of mass

g= acceleration due to gravity= 9.82 m/s^2

The distance of centre of mass is x/2

Center of mass(1) = x/2

But x= 4 m

Then substitute, we have,

Center of mass(1) = 4/2 = 2m

We can find the total torque, through the summation of moments that comes from both the man and the beam.

τ = τ(1) + τ(2)

But

τ(1)= ( Center of m1 × m1 × g)= (2× 470× 9.81)

= 9221.4Nm

τ(2)= X * m2 * g = ( 4× 75 × 9.81)= 2943Nm

τ = τ(1) + τ(2)

= 9221.4Nm + 2943Nm

= 12164.4 Nm

Hence, the magnitude of the torque about the point where the beam is bolted into place is 12164.4 Nm

6 0
2 years ago
Can a vector be shorter than one of its components
Sauron [17]
It can never be shorter than a component - magnitude of avector is the square root of the sum of the components squared, and a square function never produces a negative number. However, it can be the same size as its component, if that component is the only one
3 0
3 years ago
A geologist is comparing the properties of different minerals. He rubs each one on a piece of white tile and observes the color
denis23 [38]

He performed a streak test, in which a piece of the mineral is rubbed across a piece of unglazed porcelain in order to determine the color of the mineral in powdered form.

4 0
3 years ago
What is your velocity if it takes you 40 seconds to walk around a circle of 50meters 3 times?​
Shtirlitz [24]

Answer:

0 m/s

Explanation:

Velocity is displacement over time.  Displacement is the distance between your initial position and your final position.  If you walk in a circle, you end up back where you started, so your displacement is 0.  Therefore, your velocity is also 0.

8 0
3 years ago
Read 2 more answers
Other questions:
  • A compass is a magnet and Earth is a magnet. How does the magnetism of a compass work with the
    5·1 answer
  • A force has to have what two factors? Magnitude and Velocity. Velocity and Acceleration. Magnitude and Direction. Size and Speed
    5·1 answer
  • 6. A man is riding a bike with an acceleration of 5.0 meters per second and a mass of the bike and him combined is 20 kg. What f
    15·1 answer
  • Potential energy increases with the greater height mass of an object.True or False
    14·1 answer
  • Which descriptor applies to the circuit?<br><br> A- on<br> B- closed<br> C- incomplete <br> D- open
    9·2 answers
  • Which term describes energy stored inside the nucleus of an atom?
    10·1 answer
  • HELP ASAPPPPPPP !!!!
    15·1 answer
  • A meteor is approaching Earth. Which statement about its motion is true?
    10·2 answers
  • In a model of the solar system that was about as large as a college campus how large would the Sun be?
    6·1 answer
  • Upon inspiration, what is the name of the air in the conducting zone that is not available for gas exchange?.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!