Out of the given options, weight is influenced by mass and gravity
Answer: Option A
<u>Explanation:
</u>
The object's mass is defined as the quantity of a matter with which the object is formed. It can change its state of matter but the quantity will remain the same. However, the weight is defined as how much force gravity exerts on the object's mass to pull it.
The mass is always same irrespective the location but the weight may vary from one place to the other while talking for the bigger picture. For example, the object's weight may be 60 kg on Earth but when it is measured on the moon, it will be lesser.
The weight of an object generally has nothing doing with the volume and it doesn't depend solely on the gravitational pull. The mass plays a crucial role.

Answer:
2.84403 seconds
2.91483 seconds
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s²
It takes 2.84403 seconds to reach the highest point

The ball will travel 39.67431+2 = 41.67431 m while going down to the ground

The ball takes 2.91483 seconds to hit the ground after it reaches its highest point.
Answer:
Fy = 14.3 [N]
Explanation:
To be able to solve this problem we must know that the force is a vector and has magnitude and direction, therefore it can be decomposed into the force in the X & y components:
When we have the components on the horizontal and vertical axes we must use the Pythagorean theorem.

where:
F = 15 [N]
Fx = horizontal component = 4.5 [N]
Fy = vertical component [N]
![15=\sqrt{4.5^{2}+F_{y}^{2}}\\ 15^{2}= (\sqrt{4.5^{2}+F_{y}^{2}})^{2} \\225 = 4.5^{2}+F_{y} ^{2}\\ F_{y}^{2} =225 -4.5^{2}\\ F_{y}^{2}=204.75\\F_{y}=\sqrt{204.75}\\ F_{y}=14.3 [N]](https://tex.z-dn.net/?f=15%3D%5Csqrt%7B4.5%5E%7B2%7D%2BF_%7By%7D%5E%7B2%7D%7D%5C%5C%2015%5E%7B2%7D%3D%20%28%5Csqrt%7B4.5%5E%7B2%7D%2BF_%7By%7D%5E%7B2%7D%7D%29%5E%7B2%7D%20%5C%5C225%20%3D%204.5%5E%7B2%7D%2BF_%7By%7D%20%5E%7B2%7D%5C%5C%20%20F_%7By%7D%5E%7B2%7D%20%3D225%20-4.5%5E%7B2%7D%5C%5C%20F_%7By%7D%5E%7B2%7D%3D204.75%5C%5CF_%7By%7D%3D%5Csqrt%7B204.75%7D%5C%5C%20%20F_%7By%7D%3D14.3%20%5BN%5D)
Velocity, because if an object is in motion with no direction we will consider it as speed, but if it has direction we will consider it as Velocity. Hope it helps
Answer:
Therefore the rate of corrosion 37.4 mpy and 0.952 mm/yr.
Explanation:
The corrosion rate is the rate of material remove.The formula for calculating CPR or corrosion penetration rate is

K= constant depends on the system of units used.
W= weight =485 g
D= density =7.9 g/cm³
A = exposed specimen area =100 in² =6.452 cm²
K=534 to give CPR in mpy
K=87.6 to give CPR in mm/yr
mpy


=37.4mpy
mm/yr


=0.952 mm/yr
Therefore the rate of corrosion 37.4 mpy and 0.952 mm/yr.