Answer:
The rise in height of combined block/bullet from its original position is 0.45m
Explanation:
Given;
mass of bullet, m₁ = 12 g = 0.012 kg
mass of block of wood, m₂ = 1 kg
initial speed of bullet, u₁ = 250 m/s.
initial speed of block of wood, u₂ = 0
From the principle of conservation of linear momentum, calculate the final speed of the combined block/bullet system.
m₁u₁ + m₂u₂ = v(m₁+m₂)
where;
v is the final speed of the combined block/bullet system.
0.012 x 250 + 0 = v (0.012 + 1)
3 = v (1.012)
v = 3/1.012
v = 2.96 m/s
From the principle of conservation of energy, calculate the rise in height of the block/bullet combined from its original position.
¹/₂mv² = mgh
¹/₂v² = gh
¹/₂ (2.96)² = (9.8)h
4.3808 = 9.8h
h = 4.3808/9.8
h = 0.45 m
Therefore, the rise in height of combined block/bullet from its original position is 0.45m
Answer:
The energy lost by the atoms is given off as an electromagnetic wave. ... even if it's not very intense, will always cause electrons to be emitted.
Explanation:
The elasticity of a polymer is primarily due to the structure of the molecule and the cross-linking between strands. Hydrogen bonding is a contributor to the shape of the molecule, but not a major player in terms of elasticity. We would have to answer "false".
<span>
</span>
Answer:
Option C
100 J
Explanation:
Kinetic energy, KE is given by
where m is the mass and v is the velocity
Substituting 50 Kg for mass, m and 2 m/s for velocity v then we obtain

Therefore, the child's kinetic energy is equivalent to 100 J