If the car's motion appears as a horizontal line on a <u><em>position-time </em></u>graph, it shows that as time changes, the car's position doesn't change.
This is just a complicated way to say that the car is <em>not moving</em>.<em> (A)</em>
Answer:
A = 5.6μs
B = 178.57kHz
C = 2.8μs
Explanation:
A. It takes ¼ of the period of the circuit before the total energy is converted from electrical energy in the capacitor to magnetic energy in the inductor.
t = T/4
T = 4*t
T = 4 * 1.4 = 5.6μs
B. f = 1/T
Frequency is the inverse of period
f = 1 / 5.6*10⁻⁶
f = 178571.4286Hz
f = 178.57kHz
C. time taken for maximum energy to occur is T/2
t = 5.6 / 2 = 2.8μs
Answer:
This is because when the pedal sprocket arms are in the horizontal position, it is perpendicular to the applied force, and the angle between the applied force and the pedal sprocket arms is 90⁰.
Also, when the pedal sprocket arms are in the vertical position, it is parallel to the applied force, and the angle between the applied force and the pedal sprocket arms is 0⁰.
Explanation:
τ = r×F×sinθ
where;
τ is the torque produced
r is the radius of the pedal sprocket arms
F is the applied force
θ is the angle between the applied force and the pedal sprocket arms
Maximum torque depends on the value of θ,
when the pedal sprocket arms are in the horizontal position, it is perpendicular to the applied force, and the angle between the applied force and the pedal sprocket arms is 90⁰.
τ = r×F×sin90⁰ = τ = r×F(1) = Fr (maximum value of torque)
Also, when the pedal sprocket arms are in the vertical position, it is parallel to the applied force, and the angle between the applied force and the pedal sprocket arms is 0⁰.
τ = r×F×sin0⁰ = τ = r×F(0) = 0 (torque is zero).
Answer:
Victor will always be able to select 4 of those cards with the following property
Explanation:
Number of trading cards = 100
victor selects 21 cards
let the 4 cards be labelled : A,B,C and D
The average power level of : A,B,C,D = ( A + B + C + D )/ 4 = P
let the two pairs be : ( A + B ) and ( C + D )
note: average power of each pair = P and this shows that
( A + B ) = ( C + D ) for Victor to select 4 cards out of the 21 cards that exhibit the same property
we have to check out the possible choices of two cards out of 21 cards yield distinct sums.
= C(21,2)=(21x20)/2 = 210.
from the question the number of distinct sums that can be created using 101 through 200 is < 210 .
hence it is impossible to get 210 distinct sums therefore Victor will always be able to select 4 of those cards