Concaved lenses...........
This equation is one of the most useful in classical physics. It is a concise statement of Isaac Newton's<span> Second Law of Motion, holding both the proportions and vectors of the Second Law. It translates as: The net force on an object is </span>equal<span> to the </span>mass<span>of the object multiplied by the </span>acceleration<span> of the object.</span>
You can use Vf^2-Vi^2 = 2ax
Vf^2 - 0 = 2(9.81)(25)
Or you can use energy
mgh = 1/2mv^2
2gh =v^2
Same thing
Radar waves are the waves with the lowest energy.
Answer: a) The rate constant, k, for this reaction is
b) No
does not depend on concentration.
Explanation:
Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.

Given: Order with respect to
= 1
Thus rate law is:
a) ![Rate=k[A]^1](https://tex.z-dn.net/?f=Rate%3Dk%5BA%5D%5E1)
k= rate constant
![0.00250=k[0.484]^1](https://tex.z-dn.net/?f=0.00250%3Dk%5B0.484%5D%5E1)

The rate constant, k, for this reaction is
b) Expression for rate law for first order kinetics is given by:

where,
k = rate constant
t = age of sample
a = let initial amount of the reactant
a - x = amount left after decay process
Half life is the amount of time taken by a radioactive material to decay to half of its original value.


Thus
does not depend on concentration.