Answer: 7.2 ounces
Explanation:
1) Data:
<span>- glass size: 9-ounce
</span><span>
</span><span>- content of vitamin C: 72 milligrams
</span><span>
</span><span>
</span><span>- glasssize: x
</span><span>
</span><span>- content of vitamin C: 60 milligrams
</span><span>
</span><span>
</span><span>2) Proportion
</span><span>
</span><span>
</span><span>9 ounces / 75 mg = x / 60 mg
</span><span>
</span><span>
</span><span>3) Solution:
</span><span>
</span><span>
</span><span>9 ounces × 60 mg = 75 mg × x
</span><span>
</span><span>
</span><span>⇒ x = 9 ounces × 60 mg / 75 mg = 7.2 ounces
</span>
Answer:
1. All the possible energy transformations that occur with a dishwasher that uses electrical energy are heat energy because the dishwasher uses the electrical energy to heat the water, also electrical energy is transformed into kinetic energy and sound energy the reasoning behind this is that the parts moving inside the dishwasher is causing the sound.
2. Take as an example a light bulb inside a lamp to illuminate a room. When you plug it in a plug and turn it on, light is generated. More precisely, heat (Joule effect) is produced inside the lamp by its internal filament (conductive material) when it passes through the electrical energy, generated by the friction of the atoms that are inside it when it encounters a resistance.
Explanation:
Hope this helps love!! btw love ur pfp
Answer:
<em>At equilibrium, the rate of the forward, and the reverse reactions are equal.</em>
Explanation:
In an equilibrium chemical reaction, the rate of forward reaction, is equal to the rate of reverse reaction. Note that the reactions does not cease at equilibrium, but rather, the reactants are converted to product, at the same rate at which the product is also being converted into the reactants in the reaction. When chemical equilibrium is reached, a careful calculation of the value of equilibrium constant is approximately equal to 1.
NB: If the value of equilibrium constant is far far greater than 1, then the reaction will favors more of the forward reaction, and if far far less than 1, the reaction will favor more of the reverse reaction.
Answer: Gases are complicated. They're full of billions and billions of energetic gas molecules that can collide and possibly interact with each other. Since it's hard to exactly describe a real gas, people created the concept of an Ideal gas as an approximation that helps us model and predict the behavior of real gases. The term ideal gas refers to a hypothetical gas composed of molecules which follow a few rules:
Ideal gas molecules do not attract or repel each other. The only interaction between ideal gas molecules would be an elastic collision upon impact with each other or an elastic collision with the walls of the container. [What is an elastic collision?]
Ideal gas molecules themselves take up no volume. The gas takes up volume since the molecules expand into a large region of space, but the Ideal gas molecules are approximated as point particles that have no volume in and of themselves.
If this sounds too ideal to be true, you're right. There are no gases that are exactly ideal, but there are plenty of gases that are close enough that the concept of an ideal gas is an extremely useful approximation for many situations. In fact, for temperatures near room temperature and pressures near atmospheric pressure, many of the gases we care about are very nearly ideal.
If the pressure of the gas is too large (e.g. hundreds of times larger than atmospheric pressure), or the temperature is too low (e.g.
−
200
C
−200 Cminus, 200, start text, space, C, end text) there can be significant deviations from the ideal gas law.
Explanation:
Answer:
endoplasmic reticulum:
✔ helps in the production and movement of materials
Golgi body:
✔ packages and distributes materials in and out of cell
mitochondrion:
✔ supplies energy that the cell uses
ribosome:
✔ produces proteins for the cell
Explanation:
took test :D