Answer:
CH₃CO₂H + H₂O ⇄ CH₃CO₂⁻ + H₃O⁺
Explanation:
A buffer is defined as the mixture of a weak acid and its conjugate base or vice versa.
For the acetic acid buffer, CH₃CO₂H is the weak acid and its conjugate base is the ion without H⁺, that is CH₃CO₂⁻. The equilibrium equation in water knowing this is:
<h3>CH₃CO₂H + H₂O ⇄ CH₃CO₂⁻ + H₃O⁺</h3>
<em>In the equilibrium, the acid is dissociated in the conjugate base and the hydronium ion.</em>
Answer:
Energy was released
Explanation:
Decrease in temperature means less energy, but the energy had to have been transferred because energy can't be destroyed or created. So if the temp. went down, energy must have been lost. (If it had been absorbed, the temp. would have gone up)
Answer:
We need 78.9 mL of the 19.0 M NaOH solution
Explanation:
Step 1: Data given
Molarity of the original NaOH solution = 19.0 M
Molarity of the NaOH solution we want to prepare = 3.0 M
Volume of the NaOH solution we want to prepare = 500 mL = 0.500 L
Step 2: Calculate volume of the 19.0 M NaOH solution needed
C1*V1 = C2*V2
⇒with C1 = the concentration of the original NaOH solution = 19.0 M
⇒with V1 = the volume of the original NaOH solution = TO BE DETERMINED
⇒with C2 = the concentration of the NaOH solution we want to prepare = 3.0 M
⇒with V2 = the volume of the NaOH solution we want to prepare = 500 mL = 0.500 L
19.0 M * V2 = 3.0 M * 0.500 L
V2 = (3.0 M * 0.500L) / 19.0 M
V2 = 0.0789 L
We need 0.0789 L
This is 0.0789 * 10^3 mL = 78.9 mL
We need 78.9 mL of the 19.0 M NaOH solution
<span>Answer: B. Ionic solids have higher melting points than molecular solids.
</span>
This is because the rest are false, as solids are able to melt, and do have melting points. Also, not all solids have the same melting points.
Answer:
Higher concentration to an area of lower concentration
Explanation:
When you open a perfume bottle at a corner of a room, after a while, its fragrance can be perceived across a distance at the other end of the room. This is because, molecules of the compound in the fragrance have moved from the area of higher concentration in the perfume bottle, across a concentration gradient to a region of lower concentration at the other end of the room. This is diffusion.