Answer:
125.83672 seconds
Explanation:
P = Power of the horse = 1 hp = 746 W (as it is not given we have assumed the horse has the power of 1 hp)
m = Mass of professor = 103 kg
g = Acceleration due to gravity = 9.8 m/s²
h = Height of professor = 93 m
Work done would be equal to the potential energy

Power is given by

The time taken by the horse to pull the professor is 125.83672 seconds
Answer:
Below!
Explanation:
The citric acid in the lemon acts as an electrolyte, a solution that conducts electricity. The zinc nail sheds electrons as electrically charged ions into the acid (a process called “Oxidation” because the material loses electrons). ... The average lemon output is . 9 volts at .
Answer:
Slope = 2 m / 10 m = 1/5
For every 5 m of effort the object will be raised 1 m
W = work done on object = M g h increase in PE of object
E S = W where E is effort and S the distance thru which the effort acts
E S = M g H
E = 100 kg * 9.8 m/s^2 * 2 m / 10 m = 196 kg m / s^2 = 196 N
Check: total work = 2 * 9.8 * 100 = 1960 J
Force Needed = 1960 J / 2 m = 980 Newtons
Mechanical advantage = 980 / 196 = 5 as one would expect since the object is raised 1 m for every 5 m of force input
The equation for the resistance R is: R=ρ*(l/A), where, ρ is electrical resistivity, l is the length of the conductor, and A is the surface area.
The initial surface area is:
A=r²π, then when we double the radius we get:
A₁=(2*r)²π=4*r²π=4*A
Initial resistance is: R=ρ*(l/A).
When we double the radius, resistance is: R₁=ρ*{ l / (4*A) }
The ratio of the new resistance to the old one:
R₁/R=[ρ*(l/A)] / [ ρ* { l / (4*A) } ] = ρ, l and A cancel out and we get:
R₁/R=(1/1)/(1/4)=4/1
<span> vernier scale because is a part of vernier calipers.rest of them are parts of other measuring instruments like dial guage, screw guage etc</span>