1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Genrish500 [490]
3 years ago
5

A 1.6 kg bicycle wheel with a radius of 0.31 m turns at a constant angular speed of 27 rad/s when a(n) 0.33 kg reflector is at a

distance of 0.19 m from the axle. What is the angular speed of the wheel when the reflector slides to a distance of 0.26 m from the axle? Answer in units of rad/s.
Physics
1 answer:
skad [1K]3 years ago
3 0

Answer:

angular speed = 25.393 rad/s

Explanation:

Given Data:

weight of bicycle wheel is 1.6 kg

radius of bicycle wheel is 0.31 m

angular speed is 27 rad/s

weight of reflector uis 0.33 kg

reflector distance from axle is 0.19 m

we know that moment of inertia between two mass is calculated as

Moment of inertiaI1 = \frac{1}{2} { MR^2 +m r^2 }

= \frac{1}{2}[ {1.6*0.31^2 + 0.33* 0.19^2}]

= 0.0828

Moment of inertia I2

= \frac{1}{2}[ {1.6*0.31^2 + 0.33* 0.26^2}]

= 0.088

\frac{I1}{I2} = 0.9405

\omega =  {\frac{I1}{I2} \omega _1

= 0.9405 \times 27

             = 25.393 rad/s

You might be interested in
A toy gun uses a spring to project a 4.5-g soft rubber sphere horizontally. The spring constant is 8.0 N/m, the barrel of the gu
marishachu [46]

Answer:

1.93 m/s

Explanation:

Parameters given:

Mass = 4.5g = 0.0045kg

Spring constant = 8.0 N/m

Length of barrel = 13 cm = 0.013m

Frictional force = 0.035N

Compression = 5.8 cm = 0.058m

First, we find the P. E. stored in the spring:

P. E. = ½*k*x²

P. E. = ½ * 8 * 0.058² = 0.013J

Then, we find the work done by the frictional force while the sphere is leaving the barrel of the gun:

Work = Force * distance

The distance here is the length of the barrel.

Work = 0.035 * 0.13 = 0.0046 J

The kinetic energy of the sphere can now be found:

K. E. = P. E. - Work done

K. E. = 0.013 - 0.0046 = 0.0084J

We can now find the speed using the formula for K. E.:

K. E. = ½*m*v²

0.0084 = ½ * 0.0045 * v²

v² = 0.0084/0.00255 = 3.733

=> v = 1.93 m/s

4 0
3 years ago
Read 2 more answers
Describe the Pascal's principles​
boyakko [2]

Explanation:

Pascal's principle, also called Pascal's law, in fluid (gas or liquid) mechanics, statement that, in a fluid at rest in a closed container, a pressure change in one part is transmitted without loss to every portion of the fluid and to the walls of the container.

3 0
3 years ago
Two steel balls, of masses m1=1.00 kg and m2=2.00 kg, respectively, are hung from the ceiling with light strings next to each ot
Zolol [24]

Answer:

(a) The maximum height achieved by the first ball, m₁ is 0.11 m

(a) The maximum height achieved by the second ball, m₂ ball is 0.44 m

Explanation:

Given;

mass of the first ball, m₁ = 1 kg

mass of the second ball, m₂ = 2 kg

The velocity of the first when released from a height of 1 m before collision;

u₁² = u₀² + 2gh

u₀ = 0, since it was released from rest

u₁² =  2gh

u₁² = 2 x 9.8 x 1

u₁² = 19.6

u₁ = √19.6

u₁ = 4.427 m/s

The velocity of the second ball before collision, u₂ = 0

Apply the principle of conservation of linear momentum, to determine the velocity of the balls after an elastic collision.

m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂

where;

v₁ is the final velocity of the first ball after an elastic collision

v₂ is the final velocity of the second ball after an elastic collision

m₁u₁ + m₂(0) = m₁v₁ + m₂v₂

m₁u₁ =  m₁v₁ + m₂v₂

1 x 4.427 = v₁ + 2v₂

v₁ + 2v₂ = 4.427

v₁  = 4.427 - 2v₂  ----- equation (1)

one directional velocity;

u₁ + v₁ = u₂ + v₂

u₂ = 0

u₁ + v₁ = v₂

v₁ = v₂ - u₁

v₁ = v₂ - 4.427 ------ equation (2)

Substitute v₁ into equation (1)

v₂ - 4.427 = 4.427 - 2v₂

3v₂ = 4.427 + 4.427

3v₂  = 8.854

v₂ = 8.854 / 3

v₂  = 2.95 m/s (→ forward direction)

v₁ = v₂ - 4.427

v₁ = 2.95 - 4.427

v₁  = - 1.477 m/s

v₁  = 1.477 m/s ( ← backward direction)

Apply the law of conservation of mechanical energy

mgh_{max} = \frac{1}{2}mv_{max}^2

(a) The maximum height achieved by the first ball (v₁  = 1.477 m/s)

mgh_{max} = \frac{1}{2}mv_{max}^2 \\\\gh_{max} = \frac{1}{2}v_{max}^2\\\\ h_{max}  =  \frac{1}{2g}v_{max}^2\\\\ h_{max}  = \frac{1}{2*9.8}(1.477^2)\\\\ h_{max}  = 0.11 \ m

(b) The maximum height achieved by the second ball (v₂  = 2.95 m/s)

mgh_{max} = \frac{1}{2}mv_{max}^2 \\\\gh_{max} = \frac{1}{2}v_{max}^2\\\\ h_{max}  =  \frac{1}{2g}v_{max}^2\\\\ h_{max}  = \frac{1}{2*9.8}(2.95^2)\\\\ h_{max}  = 0.44 \ m

6 0
3 years ago
Which describes the relationship between photon energy and the color of light?
Andrew [12]
Photon energy is directly proportional to the frequency of electromagnetic radiation.
(That would also mean that it's inversely proportional to the wavelength.)

So the photon energy increases as you scan the chart of visible colors
moving from the red end of the rainbow to the blue end.
3 0
3 years ago
Read 2 more answers
Asap? This heating curve is produced when a certain substance is heated.
MaRussiya [10]

Answer: the particles are more orderly in region 1

Explanation: region 1 is when the substance is a solid and as it is heated the particles move further apart and have more kinetic energy.

5 0
2 years ago
Read 2 more answers
Other questions:
  • A 0.140-kg baseball is dropped from rest. It has a speed of 1.20 m/s just before it hits the ground, and it rebounds with an upw
    14·1 answer
  • A proton is moving at 425 m/s. (a) How much work must be done on it to stop it? (A proton has a mass of 1.67×10−27 kg.) (b) Assu
    6·1 answer
  • What is the half life of Strontium-90? Explain your answer
    11·2 answers
  • What role does the environment play in defining the appearance of an organism? 
    14·2 answers
  • What symbol do we use for the resultant?
    12·1 answer
  • How do we calculate the "range" of the measurements?
    13·2 answers
  • A jet transport with a landing speed of 200 km/h reduces its speed to 60 km/h with a negative thrust R from its jet thrust rever
    8·1 answer
  • WILL GIVE BRAINLIEST!
    5·2 answers
  • A Car accelerates from 4 m/s to 16 m/s in 4 seconds. What is the car's
    9·2 answers
  • The blackbody curve for a star named Zeta is shown below. The most intense radiation for this star occurs in what spectral band?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!