Answer:
The answer is X: Thermal energy is converted to light energy
Y: A cold spoon placed in hot liquid gets warmer
Explanation:
I took the quiz
<span>Answer:
The moments of inertia are listed on p. 223, and a uniform cylinder through its center is:
I = 1/2mr2
so
I = 1/2(4.80 kg)(.0710 m)2 = 0.0120984 kgm2
Since there is a frictional torque of 1.20 Nm, we can use the angular equivalent of F = ma to find the angular deceleration:
t = Ia
-1.20 Nm = (0.0120984 kgm2)a
a = -99.19 rad/s/s
Now we have a kinematics question to solve:
wo = (10,000 Revolutions/Minute)(2p radians/revolution)(1 minute/60 sec) = 1047.2 rad/s
w = 0
a = -99.19 rad/s/s
Let's find the time first:
w = wo + at : wo = 1047.2 rad/s; w = 0 rad/s; a = -99.19 rad/s/s
t = 10.558 s = 10.6 s
And the displacement (Angular)
Now the formula I want to use is only in the formula packet in its linear form, but it works just as well in angular form
s = (u+v)t/2
Which is
q = (wo+w)t/2 : wo = 1047.2 rad/s; w = 0 rad/s; t = 10.558 s
q = (125.7 rad/s+418.9 rad/s)(3.5 s)/2 = 952.9 radians
But the problem wanted revolutions, so let's change the units:
q = (5528.075087 radians)(revolution/2p radians) = 880. revolutions</span>
Answer:
Explanation:
We shall apply law of conservation of momentum during the collision of ball A and B .
Total momentum before collision of A and B = .35 x 10 = 3.5 kg m/s
Let the velocity of B after collision be v .
Total momentum after collision = .35 x 2 + .35v
According to law of conservation of momentum
.35 x 2 + .35v = 3.5
.35 v = 2.8
v = 8 m /s .
The direction of B will be same as direction of A .
Answer:
The work done to get you safely away from the test is 2.47 X 10⁴ J.
Explanation:
Given;
length of the rope, L = 70 ft
mass per unit length of the rope, μ = 2 lb/ft
your mass, W = 120 lbs
mass of the 70 ft rope = 2 lb/ft x 70 ft
= 140 lbs.
Total mass to be pulled to the helicopter, M = 120 lbs + 140 lbs
= 260 lbs
The work done is calculated from work-energy theorem as follows;
W = Mgh
where;
g is acceleration due gravity = 32.17 ft/s²
h is height the total mass is raised = length of the rope = 70 ft
W = 260 Lb x 32.17 ft/s² x 70 ft
W = 585494 lb.ft²/s²
1 lb.ft²/s² = 0.0421 J
W = 585494 lb.ft²/s² = 2.47 X 10⁴ J.
Therefore, the work done to get you safely away from the test is 2.47 X 10⁴ J.