By decreasing n we can increase presure because decrease in n will shift equilibrium to either forward or reverse direction
Answer:
A) SiO2 is the limiting reactant
B) Theoretical yield= 72333.3g
C) % yield =91.5%
Explanation:
SiO2(s) + 2C(s) --------------> Si(s) + 2CO(g)
n(SiO2)= 155000/60 = 2583.33 mols
n(C)= 79000/12= 3291.66 mols
a)SiO2 is the limiting reactant
According to the balanced reaction equation,
60g of SiO2 produced 28g of SiO2
155000g of SiO2 will produce 155000×28/60= 72333.3g
Therefore theoretical yield of Si= 72333.3g
% yield= 66200/72333.3×100/1 =91.5%
Answer:
See explanation
Explanation:
In the Rutherford experiment, alpha particles were directed at the same spot on a thin gold foil.
As the alpha particles hit the foil, most of the alpha particles went through the foil. In Rutherford's interpretation, most of the particles went through because the atom consisted largely of empty space.
However, some of the alpha particles were deflected through large angles, in Rutherford's interpretation, the deflected alpha particles had hit the dense positive core of the atom which he called the nucleus.
This accounted for their scattering through large angles throughout the foil in all directions.
Answer:
Rate expression has been given below
Explanation:
According to the given equation, 1 molecule of A reacts with 1 molecule of B and produces 2 molecules of B at a time.
So, rate of disappearance of both A and B are one half of rate of appearance of B
Hence rate expression can be represented as:
![Rate=\frac{-\Delta [A]}{\Delta t}=\frac{-\Delta [B]}{\Delta t}=\frac{1}{2}\frac{\Delta [C]}{\Delta t}](https://tex.z-dn.net/?f=Rate%3D%5Cfrac%7B-%5CDelta%20%5BA%5D%7D%7B%5CDelta%20t%7D%3D%5Cfrac%7B-%5CDelta%20%5BB%5D%7D%7B%5CDelta%20t%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7B%5CDelta%20%5BC%5D%7D%7B%5CDelta%20t%7D)
where
is rate of disappearance of A,
is rate of disappearance of B and
rate of appearance of C
Answer:
18016
Explanation:
(empirical formula)n=molar mass