The correct answer that would best complete the given statement above would be option 2. <span>The relationship between molecular velocities and temperature is a direct relationship. In other words, their relationship is directly proportional. Hope that this is the answer that you are looking for. </span>
Answer:
(-1) is the slope of a graph of In(y+3) on the vertical axis versus In(x-2) on the horizontal axis.
Explanation:

Taking natural logarithm on both the sides:
![\ln [(y+3)]-\ln[2]=\ln [b]-\ln [(x-2)]](https://tex.z-dn.net/?f=%5Cln%20%5B%28y%2B3%29%5D-%5Cln%5B2%5D%3D%5Cln%20%5Bb%5D-%5Cln%20%5B%28x-2%29%5D)
![\ln [(y+3)]=\ln[2]+\ln [b]-\ln [(x-2)]](https://tex.z-dn.net/?f=%5Cln%20%5B%28y%2B3%29%5D%3D%5Cln%5B2%5D%2B%5Cln%20%5Bb%5D-%5Cln%20%5B%28x-2%29%5D)
![\ln [(y+3)]=\ln {[2\times b]-\ln [(x-2)]](https://tex.z-dn.net/?f=%5Cln%20%5B%28y%2B3%29%5D%3D%5Cln%20%7B%5B2%5Ctimes%20b%5D-%5Cln%20%5B%28x-2%29%5D)
Slope intercept form is generally given as:

m = slope, c = intercept on y axis or vertical axis
On rearranging equation:
![\ln [(y+3)]=(-1)\times \ln [(x-2)]+\ln {2b}](https://tex.z-dn.net/?f=%5Cln%20%5B%28y%2B3%29%5D%3D%28-1%29%5Ctimes%20%5Cln%20%5B%28x-2%29%5D%2B%5Cln%20%7B2b%7D)
y = ln [(y+3)], x = ln [(x-2)], m=-1 , c = ln 2b
(-1) is the slope of a graph of In(y+3) on the vertical axis versus In(x-2) on the horizontal axis.
Magnesium would be more reactive.
The name of CuO is copper II oxide and its bond type is ionic or electrovalent bond.
<h3>What is electrovalent bond?</h3>
An ionic or electrovalent bond is the type of chemical bond where two atoms or molecules are connected to each other by electrostatic attraction.
This electrostatic attraction is as a result of the transfer of electrons from the metallic element to the non-metal.
According to this question, CuO is a chemical compound consisting of two elements namely; copper and oxygen. The compound name is copper II oxide.
Copper as a metal transfers electrons to oxygen atoms, hence, an ionic bond is formed between the molecules.
Learn more about ionic bonds at: brainly.com/question/11527546
#SPJ1