___
Regarding the bonds in FesO₄, Fe and S have an ionic bond, while S and O have covalent bonds.
Elements form bonds to increase their stability. The main types of bonds are:
- Metallic bonds: they are formed between metals and the electrons are in a delocalized cloud.
- Ionic bonds: they are formed between metals (lose electrons) and nonmetals (gain electrons)
- Covalent bonds: they are formed between nonmetals, which share electrons.
Regarding the bonds in FesO₄:
- Fe is a metal and S a nonmetal, thus they will form ionic bonds.
- S and O are both nonmetals, thus they will form covalent bonds.
Regarding the bonds in FesO₄, Fe and S have an ionic bond, while S and O have covalent bonds.
Learn more: brainly.com/question/23882847
The right option is; b. mechanical
Mechanical energy is the best description of the energy of the ball as it flies over the pitcher’s head.
Mechanical energy is the energy that an object acquires due to its position or due to its motion. From the question, the baseball player has chemical potential energy (stored as food) which is transformed into work. As the baseball player hits the ball, there is energy exchange in which the ball acquires energy to perform its work. The energy obtained by the ball upon which work is done is called mechanical energy.
<span>The mixture that is most likely to form a suspension is flour and liquid water mixed together, as in a mixture like gravy. A suspension mixture is a mixture that has large solid particles, particles that are large enough for sedimentation.</span>
1) Compund Ir (x) O(y)
2) Mass of iridium = mass of crucible and iridium - mass of crucible = 39.52 g - 38.26 g = 1.26 g
3) Mass of iridium oxide = mass of crucible and iridium oxide - mass of crucible = 39.73g - 38.26g = 1.47g
4) Mass of oxygen = mass of iridum oxide - mass of iridium = 1.47g - 1.26g = 0.21g
5) Convert grams to moles
moles of iridium = mass of iridium / molar mass of iridium = 1.26 g / 192.17 g/mol = 0.00656 moles
moles of oxygen = mass of oxygen / molar mass of oxygen = 0.21 g / 15.999 g/mol = 0.0131
6) Find the proportion of moles
Divide by the least of the number of moles, i.e. 0.00656
Ir: 0.00656 / 0.00656 = 1
O: 0.0131 / 0.00656 = 2
=> Empirical formula = Ir O2 (where 2 is the superscript for O)
Answer: Ir O2
Answer:
velocity = 29925×10⁶ m/s
Explanation:
Given data:
Frequency = 35 MHz
Wavelength = 855 m
Velocity = ?
Solution:
MHz to Hz
35×10⁶ Hz
Formula:
<em>velocity = Wavelength × Frequency</em>
velocity = 855 m × 35×10⁶ Hz
velocity = 29925×10⁶ m/s
Hz = s⁻¹