Fulcrum need to be positioned balanced with weight on both the sides following law of lever.
What is the physical law of the lever?
- It is the foundation for issues with weight and balance. According to this rule, a lever is balanced when the weight multiplied by the arm on one side of the fulcrum, which serves as the pivot point for the device, equals the weight multiplied by the arm on the opposing side.
- The lever is balanced, in other words, when the sum of the moments about the fulcrum is zero.
- The situation in which the positive moments (those attempting to turn the lever clockwise) equal the negative moments is known as this (those that try to rotate it counterclockwise).
- Moving the weights closer to or away from the fulcrum, as well as raising or lowering the weights, can alter the balance point, or CG, of the lever.
Learn more about the Fulcrum with the help of the given link:
brainly.com/question/16422662
#SPJ4
Here is the correct answer of the given problem above.
Given that the basket has a mass of 5.5kg, the magnitude of the normal force if the basket is at rest on a ramp inclined above the horizontal is at 12 degrees. The solution is simple:
<span>Fn at rest = lmgl </span>
<span>= 5.5kg (9.80N/kg)
=</span><span> mgCos12degrees
Hope this answer helps. </span>
Answer:
0.699 L of the fluid will overflow
Explanation:
We know that the change in volume ΔV = V₀β(T₂ - T₁) where V₀ = volume of radiator = 21.1 L, β = coefficient of volume expansion of fluid = 400 × 10⁻⁶/°C
and T₁ = initial temperature of radiator = 12.2°C and T₂ = final temperature of radiator = 95.0°C
Substituting these values into the equation, we have
ΔV = V₀β(T₂ - T₁)
= 21.1 L × 400 × 10⁻⁶/°C × (95.0°C - 12.2°C)
= 21.1 L × 400 × 10⁻⁶/°C × 82.8°C = 698832 × 10⁻⁶ L
= 0.698832 L
≅ 0.699 L = 0.7 L to the nearest tenth litre
So, 0.699 L of the fluid will overflow
The description of the question provided above points out to the famous Big Bang Theory. In addition, this theory is among the most accepted by cosmologists because it fits like a glove to the phenomenon the universe is experiencing right now: it is expanding and distances between celestial bodies are getting farther and farther.