Answer:
0.1 L
Explanation:
From the question given above, we obtained the following data:
Initial volume (V₁) = 0.05 L
Initial Pressure (P₁) = 207 KPa
Final pressure (P₂) = 101 KPa
Final volume (V₂) =?
We can obtain the new volume (i.e the final volume) of the gas by using the Boyle's law equation as illustrated below:
P₁V₁ = P₂V₂
207 × 0.05 = 101 × V₂
10.35 = 101 × V₂
Divide both side by 101
V₂ = 10.35 / 101
V₂ = 0.1 L
Thus, the new volume of the gas is 0.1 L
Answer:
three times the original diameter
Explanation:
From the wire's resistance formula, we can calculate the relation between the diameter of the wire and its length:

Here, d is the wire's diameter,
is the electrical resistivity of the material and R is the resistance of the wire. We have 

Answer: e. Christian Dopplerâ
Explanation:
Based on the information given, the scientist of the past that should definitely be included in the exhibit is Christian Dopplera.
He described how the frequency of sound waves and light is being affected by the relative speed of both the source and also the observer. This was referred to as the Doppler effect.
In this scenario, the Doppler effect can be used to show how the universe is expanding. Therefore, the correct option is E.
Answer:
B) The total number of atoms does not change, so mass is conserved in the reaction.
Explanation:
According to the <u><em>Law of Conservation of Mass</em></u>, no matter can ever be created or destroyed. The number of atoms does not change, thus the mass does not change.