Answer:
block velocity v = 0.09186 = 9.18 10⁻² m/s and speed bollet v₀ = 11.5 m / s
Explanation:
We will solve this problem using the concepts of the moment, let's try a system formed by the two bodies, the bullet and the block; In this system all scaffolds during the crash are internal, consequently, the moment is preserved.
Let's write the moment in two moments before the crash and after the crash, let's call the mass of the bullet (m) and the mass of the Block (M)
Before the crash
p₀ = m v₀ + 0
After the crash
= (m + M) v
p₀ = 
m v₀ = (m + M) v (1)
Now let's lock after the two bodies are joined, in this case the mechanical energy is conserved, write it in two moments after the crash and when you have the maximum compression of the spring
Initial
Em₀ = K = ½ m v2
Final
E
= Ke = ½ k x2
Emo = E
½ m v² = ½ k x²
v² = k/m x²
Let's look for the spring constant (k), with Hook's law
F = -k x
k = -F / x
k = - 0.75 / -0.25
k = 3 N / m
Let's calculate the speed
v = √(k/m) x
v = √ (3/8.00) 0.15
v = 0.09186 = 9.18 10⁻² m/s
This is the spped of the block plus bullet rsystem right after the crash
We substitute calculate in equation (1)
m v₀ = (m + M) v
v₀ = v (m + M) / m
v₀ = 0.09186 (0.008 + 0.992) /0.008
v₀ = 11.5 m / s
Answer:
Given
acceleration (a) =1.5ms2
Force(F) =2100N
R. t. c mass (m) =?
Form
F=ma(divided by m both sides)
m=F/a
m=2100/105
m=1400kg
mass of car =1400kg
You can conclude that the solution is probably acidic because bases rarely react with metals.
Answer:
160000000 kg.
Explanation:
p=mv
p=1.6x10^9
v=10m/s
rearrange and substitute:
(1.6x10^9)=m(10)
m=(1.6x10^9)/10
m= 1.6x10^8 kg.
Answer:
final displacement = +24484.5 nm
Explanation:
The path difference when 158 bright spots were observed with red light (λ1 = 656.3 nm) is given as;
Δr = 2d2 - 2d1 = 150λ1
So, 2d2 - 2d1 = 150λ1
Dividing both sides by 2 to get;
d2 - d1 = 75λ1 - - - - eq1
Where;
d1 = distance between the fixed mirror and the beam splitter
d2 = position of moveable mirror from splitter when 158 bright spots are observed
Now, the path difference between the two waves when 114 bright spots were observed is;
Δr = 2d'2 - 2d1 = 114λ1
2d'2 - 2d1 = 114λ1
Divide both sides by 2 to get;
d'2 - d1 = 57λ1
Where;
d'2 is the new position of the movable mirror from the splitter
Now, the displacement of the moveable mirror is (d2 - d'2). To get this, we will subtract eq2 from eq1.
(d2 - d1) - (d'2 - d1) = 75λ1 - 57λ2
d2 - d1 - d'2 + d1 = 75λ1 - 57λ2
d2 - d'2 = 75λ1 - 57λ2
We are given;
(λ1 = 656.3 nm) and λ2 = 434.0 nm.
Thus;
d2 - d'2 = 75(656.3) - 57(434)
d2 - d'2 = +24484.5 nm