The number of turns of wire
Answer:
1.6675×10^-16N
Explanation:
The force of gravity that the space shuttle experiences is expressed as;
g = GM/r²
G is the gravitational constant
M is the mass = 1.0 x 10^5 kg
r is the altitude = 200km = 200,000m
Substitute into the formula
g = 6.67×10^-11 × 1.0×10^5/(2×10^5)²
g = 6.67×10^-6/4×10^10
g = 1.6675×10^{-6-10}
g = 1.6675×10^-16N
Hence the force of gravity experienced by the shuttle is 1.6675×10^-16N
F=ma Force is equal to mass times acceleration.
So looking at the equation if mass stays the same but we make F three times larger then acceleration will become 3 times larger as well because the equation must remain equal on both sides.
just multiply both sides of the equation F=ma times 3. So 3xF=3x ma
Answer:
14.112 mV
Explanation:
L = 16 m, v = 21 m/s, B = 42 μ T = 42 x 10^-6 T
The formula for the induced emf is given by
e = B x v x L
e = 42 x 10^-6 x 21 x 16 = 14.112 x 10^-3 V = 14.112 mV
Thus, the induce emf is 14.112 mV.
At a constant speed of 5.00 m/s, the speed at which the poodle completes a full revolution is

so that its period is
(where 1 revolution corresponds exactly to 360 degrees). We use this to determine how much of the circular path the poodle traverses in each given time interval with duration
. Denote by
the angle between the velocity vectors (same as the angle subtended by the arc the poodle traverses), then



We can then compute the magnitude of the velocity vector differences
for each time interval by using the law of cosines:


and in turn we find the magnitude of the average acceleration vectors to be

So that takes care of parts A, C, and E. Unfortunately, without knowing the poodle's starting position, it's impossible to tell precisely in what directions each average acceleration vector points.