Answer:
4.22 m
Explanation:
Una rampa es una máquina que se utiliza para levantar un objeto con una fuerza menor a la que realmente necesitarías. Cuanto mayor sea la longitud de la rampa, menor será la magnitud de la fuerza necesaria para levantar el objeto.
Dado que:
altura de la rampa = 1.5 m, carga = 4900 N, fuerza aplicada = 1633.33 N.
La fórmula de la rampa se da como:
fuerza aplicada * longitud de la rampa = peso de la carga * altura de la rampa
1633.33 * longitud de la rampa = 4900 * 1.5
longitud de la rampa = 4900 * 1.5 / 1633.33
longitud de la rampa = 4.22 m
Answer:
what is your question because I seem to not see a question in this question....
Stop and look to see if anything is coming
Answer:
29.2 ft/s
Explanation:
The distance of the light's projection on the wall
y = 13 tan θ
where θ is the light's angle from perpendicular to the wall.
The light completes one rotation every 3 seconds, that is, 2π in 3 seconds,
Angular speed = w = (2π/3)
w = (θ/t)
θ = wt = (2πt/3)
(dθ/dt) = (2π/3)
y = 13 tan θ
(dy/dt) = 13 sec² θ (dθ/dt)
(dy/dt) = 13 sec² θ (2π/3)
(dy/dt) = (26π/3) sec² θ
when θ = 15°
(dy/dt) = (26π/3) sec² (15°)
(dy/dt) = 29.2 ft/s
Answer:
(a). 14.4 lbf/in^2.
(b). 27.8 in, AS THE TEMPERATURE INCREASES, THE LENGTH OF MERCURY DECREASES.
Explanation:
So, from the question above we are given the following parameters which are going to help us in solving this particular Question;
=> The "barometer accidentally contains 6.5 inches of water on top of the mercury column (so there is also water vapor instead of a vacuum at the top of the barometer)"
=> "On a day when the temperature is 70oF, the mercury column height is 28.35 inches (corrected for thermal expansion)."
With these knowledge, let us delve right into the solution;
(a). The barometric pressure = water vapor pressure + acceleration due to gravity (ft/s^2) × water density(slug/ft^3) × {ft/12 in}^3 × [ height of mercury column + specific gravity of mercury × height of water column].
The barometric pressure= 0.363 + {(62.146) ÷ (12^3) × 390.6425}. = 14.4 lbf/in^2.
(b). { (13.55 × length of mercury) + 6.5 } × (62.15÷ 12^3) = 14.4 - 0.603.
Length of mercury = 27.8 in.
AS THE TEMPERATURE INCREASES, THE LENGTH OF MERCURY DECREASES.