Answer:
the maximum mass that can hang without sinking is 2.93 kg
Explanation:
Given: details:
sphere diameter d = 20 cm
so, radius r = 10 cm = 0.10 m
density of the Styrofoam sphere D = 300 kg/m3
sphere volume 

=4.18*10^{-3} m^3
we know that

mass M = Density * Volume
= (300)(4.18*10^{-3} m3)
=1.25 kg
mass of the water displace = volume *density of water
= 4.18*10^{-3} m3 * 1000
= 4.18 kg
The difference between the mass of water and mass of styrofoam is the amount of mass that the sphere can support
=4.18 kg -1.25 kg
= 2.93 kg
Answer:
I think option A is correct
=> it increases the initial energy of the reactants
hope it helps
The letter D represents the wavelength
Answer:
Im pretty sure its number 2
Explanation: