If I am to understand this question correctly this is what asks you:
If a person is riding a motorized tricycle how much work do they do?
You may ask yourself, why did I only use part of the question. Simple, the rest is not relevant to what is being asked. The weight, speed, and distance wont affect the person riding any <em><u>motorized vehicle</u></em> other than the time it takes to get from one place to another.
So to answer this question I would say:
Not much, all they really have to do is to steer and set the motorized tricycle to cruise control. Just like any rode certified vehicle.
If you have any questions about my answer please let me know and I will be happy to clarify any misunderstandings. Thanks and have a great day!
Answer:
A skater glides along a circular path. She defines a certain point on the circle as her origin. Later on, she passes through a point at which the distance she has traveled along the path from the origin is smaller than the magnitude of her displacement vector from the origin.
So here in circular motion of the skater we can see that the total path length of the skater is along the arc of the circle while we can say that displacement is defined as the shortest distance between initial and final position of the object.
So it is not possible in any circle that arc-length is less than the chord joining the two points on the circle
As we know that arc length is given as

length of chord is given as

so here


so we have

Few moons
I just took the test and got it right
Answer:
a = 3 m/s^2
Explanation:
Vi = 10 m/s
Vf = 40 m/s
t = 10 s
Plug those values into the following equation:
Vf = Vi + at
40 = 10 + 10a
---> a = 3 m/s^2
In a third class lever, the effort is located between the load and the fulcrum. If the fulcrum is closer to the load, then less effort is needed to move the load. If the fulcrum is closer to the effort, then the load will move a greater distance. ... These levers are useful for making precise movements.