Answer:
P = 180 [w]
Explanation:
To solve this problem we must use ohm's law, which is defined by the following formula.
V = I*R & P = V*I
where:
V = voltage = 200[volts]
I = current [amp]
R = resistance [ohm]
P = power [watts]
Since the bulbs are connected in series, the powers should be summed
P = 60 + 60 + 60
P = 180 [watts]
Now we can calculate the current
I = 180/200
I = 0.9[amp]
Attached is an image where we see the three bulbs connected in series, in the circuit we see that the current is the same for all the elements connected to the circuit.
And the power is defined by P = V*I
we know that the voltage is equal to 200[V], therefore
P = 200*0.9
P = 180 [w]
Hello,
Here is your answer:
The proper answer to this question is "because of there substantial size the rock rests on another rock which keeps it balanced".
If you need anymore help feel free to ask me!
Hope this helps!
Answer:
The energy of the capacitors connected in parallel is 0.27 J
Given:
C = 
C' =
Potential difference, V = 300 V
Solution:
Now, we know that the equivalent capacitance of the two parallel connected capacitors is given by:

The energy of the capacitor, E is given by;


Hi my friend, since momentum is always conserved without external forces, the momentum after the collosion will still be 0.06 kg*m/s. Hope it helps☺