Answer:
7.5 L of the 10% and 22.5 L of the 30% acid solution, she should mix.
Explanation:
Let the volume of 10% acid solution used to make the mixture = x L
So, the volume of 30% acid solution used to make the mixture = y L
Total volume of the mixture = <u>x + y = 30 L .................. (1)
</u>
For 10% acid solution:
C₁ = 10% , V₁ = x L
For 30% acid solution :
C₂ = 30% , V₂ = y L
For the resultant solution of sulfuric acid:
C₃ = 25% , V₃ = 30 L
Using
C₁V₁ + C₂V₂ = C₃V₃
10×x + 30×y = 25×30
So,
<u>x + 3y = 75 .................. (2)
</u>
Solving 1 and 2 we get,
<u>x = 7.5 L
</u>
<u>y = 22.5 L</u>
Answer:
Carbon
Explanation:
Carbon has four electrons in its valence shell, so it generally shares it in a covalent bond. This element needs four electrons to be stable, so it can form single (such as the bond with hydrogen), double (such as the bond with oxygen) or triple bonds (such as the bond with nitrogen).
It can also form bonds with other carbon, and they can form longs chains, that's why there are a lot of organic compounds (the compounds with carbon). Carbon can form rings too, such as in benzene.
Answer:
the original answer is 38.9km (3sf)
Answer: Option (c) is the correct answer.
Explanation:
When a weak acid reacts with a strong base then it results into the formation of a basic solution. Hence, the resulting solution will always have a pH greater than 7.
Since, at the equivalence point number of hydrogen ions become equal to the hydroxide ions. Therefore, pH of solution will be about 7.
So at the equivalence point, the weak acid will get neutralized due to the addition of strong base. Therefore, it will lead to the formation of conjugate base.
As a result, the solution will become slightly basic in nature.
Thus, we can conclude that at the equivalence point, the acid has all been converted into its conjugate base, resulting in a weakly acidic solution because at the equivalence point, the acid has all been converted into its conjugate base, resulting in a weakly basic solution.