The number of moles of one substance given the amount in mass can be calculated by the use of the molar mass. This is the mass of a compound per 1 mol of the said substance. For, KCl the molar mass is 74.55 g/ mol
148 g / 74.55 g/mol = 2 mol KCl
Hope this answers the question. have a nice day.
Answer:
The molar mass of lysine using the ideal gas equation for this problem is 146.25 g/mole.
Explanation:
The ideal gas equation PV = nRT, was derived from the ABC laws (Avogadros, Boyles and Charles laws). We need to obtain the value for the number of moles n.
The parameters of this equation are:
P = 1.918 atm
V = 750.0mL = 0.75L
n = ?
R = 0.0821
T = 25 degree celcius = 25 + 273 = 298 degree kelvin.
From this formular, n = (PV)/(RT)
n = (1.918 X 0.75)/(0.0821 X 298 )
n = 0.0588
n, no of mole = mass/molar mass
0.0588 = 8.6/MM
MM = 8.6/0.0588
MM = 146.25g/mole.
It’s the greenhouse effect. Hope this helps!
Since we're talking about a chain reaction, I think this would be a) self-sustaining. Chain reactions are not usually described as "weak" and can be highly explosive depending upon the compounds (think Uranium!).
The first (artificial) self-sustaining nuclear reaction is attributed to Enrico Fermi in 1942. Here's a bit of history:
http://www.atomicarchive.com/History/firstpile/firstpile_01.shtml