Answer: The ice cube would float on top of the water and the rock would sink to the bottom.
Explanation: The ice cube has a smaller density than the rock which allows the ice cube to float but makes the rock sink to the bottom of the glass of water.
Answer:
Circuit 1 and Circuit 3
Explanation:
If there is 1 Circuit and it runs out of energy, there's another one to produce the power.
Answer:
The average velocity of the sled is vavg = s/t.
Explanation:
Hi there!
The average velocity is calculated as the traveled distance over time:
vavg = Δx/Δt
Where:
vavg = average velocity.
Δx = traveled distance.
Δt = elapsed time.
We already know the traveled distance (s) and also know the time it takes the sled to travel that distance (t). Then, the average velocity can be calculated as follows:
vavg = s/t
Have a nice day!
The rest energy of a particle is

where

is the rest mass of the particle and c is the speed of light.
The total energy of a relativistic particle is

where v is the speed of the particle.
We want the total energy of the particle to be twice its rest energy, so that

which means:


From which we find the ratio between the speed of the particle v and the speed of light c:

So, the particle should travel at 0.87c in order to have its total energy equal to twice its rest energy.