Answer:
Option b. 22 g of He will have the greatest volume at STP
Explanation:
In order to determine the volume, we apply the Ideal Gases Law equation:
P . V = n . R . T
V = n . R . T / P
R, T and P are the same in all the situation we must define n (number of moles).
The one that has the greatest number of moles will have the greatest volume at STP
22 g of Ne . 1mol / 20.1 g = 1.09 moles of Ne
22g of He . 1mol / 4 g = 5.5 moles of He
22 g of O₂ . 1mol / 32g = 0.68 moles of O₂
22 g of Cl₂ . 1mol / 70.9 g = 0.31 moles of Cl₂

WHAT IS AN IONIC BOND


kossel explained that inert gases r inert due to the electronic configuration which contains 8 electrons in their outermost shell
And other elements loss and gain electrons to form ions and to have electronic configuration same as Noble gas and to get stable
#SARDAR JI.
Answer:
The final balanced equation is :

Explanation:

Balancing in acidic medium:
First we will determine the oxidation and reduction reaction from the givne reaction :
Oxidation:

Balance the charge by adding 2 electrons on product side:
....[1]
Reduction :

Balance O by adding water on required side:

Now, balance H by adding
on the required side:

At last balance the charge by adding electrons on the side where positive charge is more:
..[2]
Adding [1] and [2]:

The final balanced equation is :

Answer:
A) positive; added
Explanation:
Based on the reaction:
2NaHCO3(s) + 129kJ → Na2CO3(s) + H2(g) + CO2(g)
<em>2 moles of NaHCO3 requires 129kJ to produce 1 mole of Na2CO3, 1 mole of H2 and 1 mole of CO2.</em>
<em />
That means, the energy must be added being, thus, an exothermic reaction. The exothermic reactions have ΔH >0.
Thus, right answer is:
A) positive; added