Answer:
The necessary information is if the forces acting on the block are in equilibrium
The coefficient of friction is 0.577
Explanation:
Where the forces acting on the object are in equilibrium, we have;
At constant velocity, the net force acting on the particle = 0
However, the frictional force is then given as
F = mg sinθ
Where:
m = Mass of the block
g = Acceleration due to gravity and
θ = Angle of inclination of the slope
F = 5×9.81×sin 30 = 24.525 N
Therefore, the coefficient of friction is given as
24.525 N = μ×m×g × cos θ = μ × 5 × 9.81 × cos 30 = μ × 42.479
μ × 42.479 N= 24.525 N
∴ μ = 24.525 N ÷ 42.479 N = 0.577
Answer:
Missing numbers are 3,11,13, 15,17,19, 23,27,29 and wrong are 6,68
Answer:
1 x 10 -10 whisper at 1m distance.
Explanation:
- Properly fitted ear plugs an reduce noise form 15-30db. Although they are better for low frequency
Answer:
0.893 rad/s in the clockwise direction
Explanation:
From the law of conservation of angular momentum,
angular momentum before impact = angular momentum after impact
L₁ = L₂
L₁ = angular momentum of bullet = + 9 kgm²/s (it is positive since the bullet tends to rotate in a clockwise direction from left to right)
L₂ = angular momentum of cylinder and angular momentum of bullet after collision.
L₂ = (I₁ + I₂)ω where I₁ = rotational inertia of cylinder = 1/2MR² where M = mass of cylinder = 5 kg and R = radius of cylinder = 2 m, I₂ = rotational inertia of bullet about axis of cylinder after collision = mR² where m = mass of bullet = 0.02 kg and R = radius of cylinder = 2m and ω = angular velocity of system after collision
So,
L₁ = L₂
L₁ = (I₁ + I₂)ω
ω = L₁/(I₁ + I₂)
ω = L₁/(1/2MR² + mR²)
ω = L₁/(1/2M + m)R²
substituting the values of the variables into the equation, we have
ω = L₁/(1/2M + m)R²
ω = + 9 kgm²/s/(1/2 × 5 kg + 0.02 kg)(2 m)²
ω = + 9 kgm²/s/(2.5 kg + 0.02 kg)(4 m²)
ω = + 9 kgm²/s/(2.52 kg)(4 m²)
ω = +9 kgm²/s/10.08 kgm²
ω = + 0.893 rad/s
The angular velocity of the cylinder bullet system is 0.893 rad/s in the clockwise direction-since it is positive.
<span>it fairly is going to attain a speed of 24 m/s in a 2d, yet between t = 0 and t = a million, it fairly is not any longer vacationing at that speed, yet at slower speeds. it fairly is 12 meters. ?D = [ ( a?T^2 + 2?Tv_i ) ] / 2 the place: ?D = displacement a = acceleration ?T = elapsed time v_i = preliminary speed ?D = [ ( 24m/s^2 • 1s • 1s + 2 • 1s • 0m/s ) ] / 2 ?D = 24 / 2 ?D = 12m</span>