Answer:
The tension in the string connecting block 50 to block 51 is 50 N.
Explanation:
Given that,
Number of block = 100
Force = 100 N
let m be the mass of each block.
We need to calculate the net force acting on the 100th block
Using second law of newton



We need to calculate the tension in the string between blocks 99 and 100
Using formula of force


We need to calculate the total number of masses attached to the string
Using formula for mass


We need to calculate the tension in the string connecting block 50 to block 51
Using formula of tension

Put the value into the formula



Hence, The tension in the string connecting block 50 to block 51 is 50 N.
Complete Question
A 95 kg clock initially at rest on a horizontal floor requires a 650 N horizontal force to set it in motion. After the clock is in motion, a horizontal force of 560 N keeps it moving with a constant velocity. Find the coefficient of static friction and the coefficient of kinetic friction.
Answer:
The value for static friction is 
The value for static friction is 
Explanation:
From the question we are told that
The mass of the clock is 
The first horizontal force is 
The second horizontal force is 
Generally the static frictional force is equal to the first horizontal force
So

=> 
=> 
Generally the kinetic frictional force is equal to the second horizontal force
So



In order to compute the final velocity of the trains, we may apply the principle of conservation of momentum which is:
initial momentum = final momentum
m₁v₁ = m₂v₂
The final mass of the trains will be:
10,000 + 10,000 = 20,000 kg
Substituting the values into the equation:
10,000 * 3 = 20,000 * v
v = 1.5 m/s
The final velocity of the trains will be 1.5 m/s
Answer:
21
Explanation: its actually 20.85 but i guess they round to 21