Answer:
E = 124.7 N / C
Explanation:
Let's analyze the exercise: the microwave creates an electromagnetic wave of frequency F = 2.45 GHz, this wave is introduced into the microwave cavity and is reflected on the metal walls, which is why one or more standing waves are formed.
The electric field of the standing wave is
I = E²
E =√I
where I is the intensity of the radiation.
What is it
I = P / A
where P is the effective emission power, almost all the power of the microwave and A is the area of the cavity, in the most used microwaves
P = 700 W and the area is A = 25 x 18 cm² = 0.045 m²
I = 700 / 0.045
I = 15555.56 W/m²
let's calculate the electric field
E = √15555.56
E = 124.7 N / C
Hello!
We can use the following equation for calculating power dissipated by a resistor:

P = Power (? W)
i = Current through resistor (2.0 A)
R = Resistance of resistor (50Ω)
Plug in the known values and solve.

The voltage<span> difference between the two plates can be expressed in terms of the </span>work<span> done on a positive test charge q when it moves from the positive to the negative plate.</span><span>
E=V/d
where V is the voltage and d is the distance between the plates.
So,
E=6.0V/1mm= 6000 V/m. The electric field between the plates is 6000 V/m.</span>
Eras and then smaller periods based on geologic and biologic events that occurred during those times. According to geological time scale, there are six eras from the beginning some periods of few eras & then period is classified into smaller units called "epoch"
In short, Your Answer would be Option B
Hope this helps!