Answer: 56.44°
Explanation:
<u>Given:</u>
- Let u represent the current speed of the plane, <u>1.2 Mach</u>
<em>Converting to SI Units (m/s):</em>
= (1.2 mach)(340 ms^-1 / 1 Mach)
u = 408 m/s
- Speed of sound in air, v = 340 m/s
<u>Find:</u>
- Angle the wave front of the shock wave relative to the plane's direction of motion, θ
We have, sinθ = speed of sound / speed of object
sinθ = v / u
θ = sin^-1 (v / u)
= sin^-1 (340 / 408)
θ = 56.44°
The speed of the rock at 20 m is 34.3 m/s
Explanation:
We can solve this problem by using the law of conservation of energy: the mechanical energy of the rock, sum of its potential energy + its kinetic energy) must be conserved in absence of air resistance. So we can write:
where
:
is the initial potential energy
is the initial kinetic energy
is the final potential energy
is the final kinetic energy
The equation can also be rewritten as follows:
where:
m = 100 kg is the mass of the rock
is the acceleration of gravity
is the initial height
u = 0 is the initial speed (the rock starts at rest)
is the final height of the rock
v is the final speed when h = 20 m
And solving for v, we find:

Learn more about kinetic energy and potential energy here:
brainly.com/question/6536722
brainly.com/question/1198647
brainly.com/question/10770261
#LearnwithBrainly
B because 2800 divide by 40 is 20
Answer:
C - 50,000 * 77 * 3
Explanation:
At the top of the hill the potential energy is E= mgh= (160 kg)(9.81 m s^-2)(30 m)= 47088
hope it helps ,
<u>help me by marking as brainliest....</u>
Answer:
90%
Explanation:
if you lose 10% of a 100 you get 90