IBR is the thermal decomposition of iodine(I) bromide to produce iodine and
bromine. This reaction takes place at a temperature of over 40,5°C and is written as:
<span>2IBr ⇄ I2 + Br2
</span>
Equilibrium is a state of dynamic balance where the ratio of the product and reactant concentrations is constant.<span> You can calculate the equilibrium concentration if you know the equilibrium constant Kc (Kc=I^2*Br^2/IBR^2) and the initial concentration for the reaction. The initial concentration is obtained from ICE Table.</span>
............................................................................... Hello wonderful person <3
Answer:

Explanation:
As we know that magnetic field due to torroid is given as

this is approximately constant magnetic field along the axis of the torroid
now the flux linked with one coil of the torroid is given as


now total flux of N number of coils is given as

now we know that self inductance is the property of coil in which flux of the coil will link with the current in the coil
So we know that


Newton's second law states that F=ma so that means force =mass×acceleration force and mass