Answer:

Explanation:
If we assume that the Earth is a spherical conductor, according to Gauss's Law, the electric field is given by:

Here k is the Coulomb constant, the excess charge on the Earth's surface and r its radius. Solving for q:

<span>We can use Coulomb's law to find the force F acting on the proton that is released.
F = k x Q1 x Q2 / r^2
k = 9 x 10^9
Q1 is the charge on one proton which is 1.6 x 10^{-19} C
Q2 is the same charge on the other proton
r is the distance between the protons
F = (9x10^9) x (1.6 x 10^{-19} C) x (1.6 x 10^{-19} C) / (10^{-3})^2
F = 2.304 x 10^{-22} N
We can use the force to find the acceleration.
F = ma
a = F / m
a = (2.304 x 10^{-22} N) / (1.67 x 10^{-27} kg)
a = 1.38 x 10^5 m/s^2
The initial acceleration of the proton is 1.38 x 10^5 m/s^2</span>
Answer:
m=417.24 kg
Explanation:
Given Data
Initial mass of rocket M = 3600 Kg
Initial velocity of rocket vi = 2900 m/s
velocity of gas vg = 4300 m/s
Θ = 11° angle in degrees
To find
m = mass of gas
Solution
Let m = mass of gas
first to find Initial speed with angle given
So
Vi=vi×tanΘ...............tan angle
Vi= 2900m/s × tan (11°)
Vi=563.7 m/s
Now to find mass
m = (M ×vi ×tanΘ)/( vg + vi tanΘ)
put the values as we have already solve vi ×tanΘ
m = (3600 kg ×563.7m/s)/(4300 m/s + 563.7 m/s)
m=417.24 kg
Answer:
velocity
Explanation:
because the si unit of mass is kg, velocity is m/s, acceleration is m/S2 , moment is kgm2/s . so 5 is given as velocity.