1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yuri [45]
3 years ago
15

A car and a truck start from rest at the same instant, with the car initially at some distance behind the truck. The truck has a

constant acceleration of 2.10m/s2, and the car has an acceleration of 3.40m/s2. The car overtakes the truck after the truck has moved 60.0 m.
(A) How much time does it take the car to overtake the truck?
(B) How far was the car behind the truck initially?
(C) What is the speed of each when they are abreast?
(D) On a single graph, sketch the position of each vehicle as a function of time. Take x = 0 at the initial location of the truck.

Physics
1 answer:
Svet_ta [14]3 years ago
8 0

A) The car overtakes the truck after 7.56 s

B) Initial distance between car and truck: 37.1 m

C) Speed of the truck: 15.9 m/s, speed of the car: 25.7 m/s

D) See graph in attachment

Explanation:

A)

The truck starts from rest and has a constant acceleration, so its position at time t can be written as

x_t(t)=d+\frac{1}{2}a_tt^2

where

d is the initial distance between the truck and the car (the truck starts some distance ahead of the car)

a_t=2.10 m/s^2 is the acceleration of the truck

The car position instead it is given by the equation

x_c(t)=\frac{1}{2}a_ct^2

where

a_c=3.40 m/s^2 is the acceleration of the car

The car overtakes the truck when the truck has moved 60.0 m, so when

x_t(t') = d + 60

Therefore, solving the equation, we find the time t when  this occurs:

d+\frac{1}{2}a_t t'^2 = d+60\\\frac{1}{2}a_tt'^2=60\\t'=\sqrt{\frac{2\cdot 60}{a_t}}=\sqrt{\frac{120}{2.1}}=7.56 s

B)

In order to find the initial distance between the car and the truck (d), we have to calculate first the distance covered by the car during these 7.56 s. It is given by:

x_c(t')=\frac{1}{2}a_c t'^2=\frac{1}{2}(3.40)(7.56)^2=97.2 m

This means that after 7.56 s, when the car reaches the truck, the car has covered 97.2 m while the truck has covered 60 m. However, their positions are now equal, so we can write:

x_c(t')=x_t(t')

And by solving the equation, we find the value of d, the initial distance between car and truck:

\frac{1}{2}a_c t'^2 = d + \frac{1}{2}a_t t'^2\\d=\frac{1}{2}(a_c-a_t)t'^2 = \frac{1}{2}(3.40-2.10)(7.56)^2=37.1 m

C)

In order to find the speed of each vehicle, we use the following suvat equation:

v=u+at

where

u is the initial velocity

a is the acceleration

t is the time

For the truck, we have:

u = 0

a_t = 2.10 m/s^2

So its speed after t = 7.56 s is

v_t = 0+(2.10)(7.56)=15.9 m/s

For the car, we have

u = 0

a_c=3.40 m/s^2

So its speed after t = 7.56 s is

v_c=0+(3.40)(7.56)=25.7 m/s

D)

Find the graph required in attachment.

On the x-axis, it is represented the time in seconds. On the y-axis, it is represented the position in meters.

Both curves are in the shape of a parabola since the motion of both vehicles is an accelerated motion.

The curve that starts at -37.1 m is the curve representing the car: in fact, the car starts behind the truck by 37.1 m. The curve that starts from x = 0, t= 0 is that of the truck.

The two curves meets when t = 7.56 s: at that time, the two vehicles have reached the same position, and we see that occurs when x = 60 m, which means that this happens when the truck has covered 60 meters.

Learn more about accelerated motion:

brainly.com/question/9527152

brainly.com/question/11181826

brainly.com/question/2506873

brainly.com/question/2562700

#LearnwithBrainly

You might be interested in
A car accelerates from rest at -3.00m/s^2. What is the velocity at the end of 5.0s? What is the displacement after5.0s?
Andrew [12]

Speed = (acceleration) x (time)
Velocity = (speed) in (direction of the speed)

Speed = (-3 m/s²) x (5 s) = 15 m/s
Velocity =
             (15 m/s) in the direction opposite to the direction you call positive
.

Displacement = (distance between start-point and end-point)
                           in the direction from start-point to end-point.

Distance = (1/2) (acceleration) (time)²
Distance = (1/2) (3 m/s²) (5 s)²
                 = (1/2) (3 m/s²) (25 s²)  =  37.5 meters

Displacement =
                     37.5 meters in the direction opposite to the direction you call positive.

5 0
3 years ago
Who is the leader of the party's national committee
cestrela7 [59]
That would be <span>the national chairperson

-I hope this helped.</span>
3 0
3 years ago
Read 2 more answers
A car going at v = 29.7 m/s (67 mph) rounds a curve of radius R = 50.0 m, where the road is banked at an angle of θ = 30.0°. Wha
Nikolay [14]

Answer:

μ = 0.6

Explanation:

given,

speed of car = 29.7 m/s

Radius of curve = 50 m

θ = 30.0°

minimum static friction = ?

now,

writing all the forces acting along y-direction

N cos θ - f sinθ = mg

N cos θ -μN sinθ = mg

N = \dfrac{m g}{cos\theta-\mu sin \theta}

now, writing the forces acting along x- direction

N sin θ + f cos θ = F_{net}

N cos θ + μN sinθ = F_{net}

\dfrac{m g}{cos\theta-\mu sin \theta}(cos \theta + \mu sin\theta)=F_{net}

taking cos θ from nominator and denominator

F_{net} =\dfrac{tan\theta + \mu}{1-\mutan\theta}. mg

\dfrac{mv^2}{r}=\dfrac{tan\theta + \mu}{1-\mutan\theta}. mg

\dfrac{v^2}{r}=\dfrac{tan\theta + \mu}{1-\mutan\theta}g

\mu=\dfrac{v^2 -r g tan\theta}{v^2tan\theta + r g}

now, inserting all the given values

\mu=\dfrac{29.7^2 -50 \times 9.8tan 30^0}{29.7^2\times tan 30^0 +50 \times 9.8}

μ = 0.6

7 0
3 years ago
The measure of the force with which air molecules push on a surface is called
alex41 [277]
It is called air pressure
7 0
3 years ago
What will be the restoring force if a spring with a spring constant of 45 newtons per meter is pulled 0.03 meters in the downwar
allsm [11]
To calculate for the force in a spring, we use Hooke's Law which relates force and the displacement of the spring. It is said that the force is directly proportional to the displacement. So, it will have the equation F = kx where k is a constant and it is the spring constant.

F = kx
F = 45 N/m (0.03)
F = 1.35 N
8 0
2 years ago
Other questions:
  • You walk into the kitchen and see a broken egg on the floor. Which of the following is an inference you can make based on this o
    15·2 answers
  • Which option gives an object mass in SI units
    8·1 answer
  • What makes silver and gold different by using the terms atom and element
    8·1 answer
  • What speed must an electron have if its momentum is to be the same as that of an x-ray photon with a wavelength of 0.20 nm?
    10·1 answer
  • A man stands still on a moving walkway that is going at a speed of 0.3 m/s to the south. What is the velocity of the man accordi
    12·2 answers
  • A lady bug is sitting on the bottom of a can while you twirl it overhead on a string that is 65.0
    13·1 answer
  • ((PLEASE HELP))
    5·2 answers
  • Which of the following are vector quantities?
    11·2 answers
  • The depth of a pond is 1.5m. Calculate the pressure caused by the water at the bottom of the pond ?​?​
    6·1 answer
  • How do biological and environmental factors affect behavior?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!