Answer:
False
Explanation:
No. The buoyant force on an object is the portion of its weight that appears to vanish
when the object is in any fluid (could be either a liquid or a gas).
If the object happens to float in a particular fluid, then the buoyant force at that moment
is equal to the object's weight.
Notice that the buoyant force on an object will be different in different fluids.
Can be numbered in 2 different ways, one box represents one element, and organized by atomic number
Answer:
Work done, W = 1786.17J
Explanation:
The question says "A 75.0-kg painter climbs a 2.75-m ladder that is leaning against a vertical wall. The ladder makes an angle of 30.0 ° with the wall. How much work (in Joules) does gravity do on the painter? "
Mass of a painter, m = 75 kg
He climbs 2.75-m ladder that is leaning against a vertical wall.
The ladder makes an angle of 30 degrees with the wall.
We need to find the work done by the gravity on the painter.
The angle between the weight of the painter and the displacement is :
θ = 180 - 30
= 150°
The work done by the gravity is given by :

Hence, the required work done is 1786.17 J.
According to Charles law, we know, at constant pressure, volume is directly proportional to temperature.
So, <span>V/T = constant
</span>
V₁/t₁ = V₂/t₂
V₁t₂ = V₂t₁
Here, we have: V₁ = 9 mL
V₂ = ?
T₂ = 50+272 = 323 K
T₁ = 19+273 = 292 K
Substitute their values into the expression:
9 × 323 = V₂ × 292
V₂ = 2907 / 292
V₂ = 9.95
After rounding-off to unit place value, it would be equal to 10 mL
So, In short Option C would be your correct answer.
Hope this helps!