Answer:
When you jump down, your kinetic is converted to potential energy of the stretched trampoline. The trampoline's potential energy is converted into kinetic energy, which is transferred to you, making you bounce up. At the top of your jump, all your kinetic energy has been converted into potential energy. Right before you hit the trampoline, all of your potential energy has been converted back into kinetic energy. As you jump up and down your kinetic energy increases and decrease.
Answer:
The answer is "1557 meters".
Explanation:
speed of sound in (
)

The silver coating on the inner bottle prevents heat transfer by radiation, and the vacuum between its double wall prevents heat moving by convection. The thinness of the glass walls stops heat entering or leaving the flask by conduction.
Answer:
When a seagull picks an oyster up into the sky and then lets it drop on the rocks below to open the shell; where is the oyster's potential energy greatest? Where is its kinetic energy greatest?
Potential energy is greatest at maximum height; kinetic energy is greatest just before the oyster strikes the ground.
Explanation:
Answer:
Explanation:
No.
There is a difference between energy, called heat in this case, and temperature, which is a measure of the amount of heat contained in a material and is dependent on the material properties.
Temperature difference is what causes heat to move from one body to another.
Two objects at different temperatures placed in contact with one another will cause heat to move from the warmer body to the colder body until the temperature difference is eliminated.
The amount of heat leaving the warmer body will exactly equal the amount of heat absorbed by the cooler body. (assuming isolated system of two bodies) The temperature change within each of those bodies could be vastly different.
Example would be a 2 mm bead of molten lead dropped into a liter glass of tap water. The lead may cool several hundred °C as it solidifies while the water temperature would increase less than 1 °C