Answer:
In order to be able to solve this problem, you will need to know the value of water's specific heat, which is listed as
c=4.18Jg∘C
Now, let's assume that you don't know the equation that allows you to plug in your values and find how much heat would be needed to heat that much water by that many degrees Celsius.
Take a look at the specific heat of water. As you know, a substance's specific heat tells you how much heat is needed in order to increase the temperature of 1 g of that substance by 1∘C.
In water's case, you need to provide 4.18 J of heat per gram of water to increase its temperature by 1∘C.
What if you wanted to increase the temperature of 1 g of water by 2∘C ?
This will account for increasing the temperature of the first gram of the sample by n∘C, of the the second gramby n∘C, of the third gram by n∘C, and so on until you reach m grams of water.
And there you have it. The equation that describes all this will thus be
q=m⋅c⋅ΔT , where
q - heat absorbed
m - the mass of the sample
c - the specific heat of the substance
ΔT - the change in temperature, defined as final temperature minus initial temperature
In your case, you will have
q=100.0g⋅4.18Jg∘C⋅(50.0−25.0)∘C
q=10,450 J
Answer:
a. overuse of resources is the correct answer.
Explanation:
Renewable resources are available and they are abundant but overuse of these renewable resources will have a negative effect on the surroundings and humans.
Overuse of renewable resources will leads to the depletion of these renewable sources in the future and will also make the ecosystem unbalance.
Renewable resources are solar energy, geothermal energy, biomass energy, wind energy, hydro energy.
Thus renewable resources are threatened due to overuse and it must be carefully used.
Answer:
I know someone that has the answer
Explanation:
I know someone that has the answer
Answer:
true
Explanation:
any object that is larger will take a longer time to do things, the same applies to heat levels. The lower the heat, the longer it takes, the higher the heat, the shorter it takes. So if an iceberg is large, it will need a higher heat, whereas an ice cube is really small and doesn't need that much heat to melt.