The chemical bonds in CH4 are all single bonds. C only can bond 4 times because it needs 8 electrons in it's outer shell and only has four right now. The bonds represented are all single bonds because there are two electrons present on each side of the carbon. Two electrons, in this case, equals one bond.
I like people who are short and know what”a popppppppp
Answer:
The Avogadro's number is 
Explanation:
From the question we are told that
The edge length is 
The density of the metal is 
The molar mass of Ba is 
Generally the volume of a unit cell is

substituting value
![V = [5.02 *10^{-10}]^3](https://tex.z-dn.net/?f=V%20%3D%20%20%5B5.02%20%2A10%5E%7B-10%7D%5D%5E3)
From the question we are told that 68% of the unit cell is occupied by Ba atoms and that the structure is a metal which implies that the crystalline structure will be (BCC),
The volume of barium atom is

substituting value


The Molar mass of barium is mathematically represented as

Where
is the Avogadro's number
So

substituting value


Answer : The equilibrium constant
for the reaction is, 0.869
Explanation :
First we have to calculate the concentration of
.


The balanced equilibrium reaction is,

Initial conc. C 0
At eqm. conc.

As we are given,
The percent of dissociation =
= 37 % = 0.37
Now we have to calculate the equilibrium constant for the reaction.
The expression of equilibrium constant for the reaction will be :
![K_c=\frac{[NO_2]^2}{[N_2O_4]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BNO_2%5D%5E2%7D%7B%5BN_2O_4%5D%7D)

Now put all the values in this expression, we get :


Therefore, the equilibrium constant
for the reaction is, 0.869