Answer:
(A) L = 115.3kgm²/s
(B) dL/dt = 94.1kgm²/s²
Explanation:
The magnitude of the angular momentum of the rock is given by the foemula
L = mvrSinθ
We have been given θ = 36.9°, m = 2.0kg, v = 12.0m/s and r = 8.0m.
Therefore L = 2.00 × 12 × 8.0 × Sin 36.9° =
115.3 kgm²/s
(B) The magnitude of the rate of angular change in momentum is given by
dL /dt = d(mvrSinθ)/dt = mgrSinθ = 2.00 × 9.8 × 8.0× Sin36.9 = 94.1kgm²/s²
The thermal energy of an object is the energy contained in the motion and vibration of its molecules. Thermal energy is measured through temperature. The energy contained in the small motions of the object's molecules can be broken up into a combination of microscopic kinetic energy and potential energy.
Hope this answer helps, cause Idk, I might be wrong, but I still, I used the correct formulas, so I might be correct
Answer:
A) 1.4167 × 10^(-11) F
B) r_a = 0.031 m
C) E = 3.181 × 10⁴ N/C
Explanation:
We are given;
Charge;Q = 3.40 nC = 3.4 × 10^(-9) C
Potential difference;V = 240 V
Inner radius of outer sphere;r_b = 4.1 cm = 0.041 m
A) The formula for capacitance is given by;
C = Q/V
C = (3.4 × 10^(-9))/240
C = 1.4167 × 10^(-11) F
B) To find the radius of the inner sphere,we will make use of the formula for capacitance of spherical coordinates.
C = (4πε_o)/(1/r_a - 1/r_b)
Rearranging, we have;
(1/r_a - 1/r_b) = (4πε_o)/C
ε_o is a constant with a value of 8.85 × 10^(−12) C²/N.m
Plugging in the relevant values, we have;
(1/r_a - 1/0.041) = (4π × 8.85 × 10^(−12) )/(1.4167 × 10^(-11))
(1/r_a) - 24.3902 = 7.8501
1/r_a = 7.8501 + 24.3902
1/r_a = 32.2403
r_a = 1/32.2403
r_a = 0.031 m
C) Formula for Electric field just outside the surface of the inner sphere is given by;
E = kQ/r_a²
Where k is a constant value of 8.99 × 10^(9) Nm²/C²
Thus;
E = (8.99 × 10^(9) × 3.4 × 10^(-9))/0.031²
E = 3.181 × 10⁴ N/C
Answer:
because it has no balance