Divide the change in speed by the time for the change.
Answer:
DU = 21 KJ
Explanation:
Given the following data;
Quantity of heat = 125 KJ
Work = 104 KJ
To find the change in internal energy;
Mathematically, the change in internal energy of a system is given by the formula;
DU = Q - W
Where;
DU is the change in internal energy.
Q is the quantity of energy.
W is the work done.
Substituting into the formula, we have;
DU = 125 - 104
DU = 21 KJ
Answer:
i believe its 26.7
Explanation:
if the runner goes 8.9 m/s each second while accelerating for 3 seconds to reach top speed, the top speed would be 26.7 m/s
Answer:
A) The resultant force is 43.4 [N]
B) The movement of the heavy crate is going to the right and in the negative direction on the y-axis
Explanation:
We need to make a sketch of the different forces acting on the heavy crate.
In the attached image we can see the forces and the sum of the vector with their respective angles.
Forces in the X-axis

Forces in the y-axis
![FDiony=0[N]\\Fshirley= 16.5*sin(30)=8.25[N]\\Fjoany=19.5*sin(60)=16.88 [N]\\\\Forcesy=0+8.25-16.88= -8.63[N]](https://tex.z-dn.net/?f=FDiony%3D0%5BN%5D%5C%5CFshirley%3D%2016.5%2Asin%2830%29%3D8.25%5BN%5D%5C%5CFjoany%3D19.5%2Asin%2860%29%3D16.88%20%5BN%5D%5C%5C%5C%5CForcesy%3D0%2B8.25-16.88%3D%20-8.63%5BN%5D)
Using the Pythagorean theorem

The movement of the heavy crate is going to the right and in the negative direction on the y-axis, this can be easily seen in the graphical sum of vectors.
Answer:
Energy is force times distance. For your problem, no matter how long you push, the wall still goes nowhere, so there is no obvious energy transfer. so in conclusion, you actually didn't do anything :(
Explanation: