Nitrogen (N2) and hydrogen (H2) gases react to form ammonia, which requires -99.4 J/K of standard entropy (ΔS°).
What is standard entropy?
The difference between the total standard entropies of the reaction mixture and the summation of the standard entropies of the outputs is the standard entropy change. Each entropy in the balanced equation needs to be compounded by its coefficient, as shown by the letter "n."
Calculation:
Balancing the given reaction following-
1/2 N₂(g) + 3/2 H₂ (g)→ NH₃ (g)
ΔS° = [1 mol x S° (NH₃)g] - [1/2 mol x S° (N₂)g] - [3/2 mol x S°(H₂)g]
Here S° = standard entropy of the system
Insert into the aforementioned equation all the typical entropy values found in the literature:
ΔS° = [1 mol x 192.45 J/mol.K] - [1/2 mol x 191.61 J/mol.K] - [3/2 mol x 130.684 J/mol.K]
⇒ΔS° = - 99.4 J/K
Therefore, the standard entropy, ΔS° is -99.4 J/K.
Learn more about standard entropy here:
brainly.com/question/14356933
#SPJ4
Answer:
the emission of visible light by a body, caused by its high temperature.Compare luminescence.
the light produced by such an emission.
the quality of being incandescent.
The structure of the alkyl bromides used in a malonic ester synthesis of ethyl 2-methyl-4-pentenoate are as drawn in the attached image.
<h3>Ethyl 2-methyl-4-pentenoate by Malonic ester synthesis.</h3>
The malonic ester synthesis is a chemical reaction characterized by the alkylation of diethyl malonate or a similar ester of malonic acid at the carbon alpha (directly adjacent) to both carbonyl groups, and subsequently converted to a substituted acetic acid.
Hence, it follows from the structure of Ethyl 2-methyl-4-pentenoate that the alkyl bromides used are Ethyl bromide and methyl bromide.
Read more on Malonic ester synthesis;
brainly.com/question/17237043
Answer:
Potassium permanganate.
Explanation:
Both substances are dyes, but the methylene blue has a bigger molecular mass (319.85 g/mol), that means that the particles are bigger in comparison with the potassium permanganate that has a molecular mass of 158.034 g/mol.
Since the molar mass is the half in the case of potassium permanganate, it can be considered that the particle size is the half in size. In the agar, a smaller particle will present less resistance to flow, that means that it going to move faster.