Answer:
The semi truck travels at an initial speed of 69.545 meters per second downwards.
Explanation:
In this exercise we see a case of an entirely inellastic collision between the semi truck and the car, which can be described by the following equation derived from Principle of Linear Momentum Conservation: (We assume that velocity oriented northwards is positive)
(1)
Where:
,
- Masses of the semi truck and the car, measured in kilograms.
,
- Initial velocities of the semi truck and the car, measured in meters per second.
- Final speed of the system after collision, measured in meters per second.
If we know that
,
,
and
, then the initial velocity of the semi truck is:





The semi truck travels at an initial speed of 69.545 meters per second downwards.
Answer:
32.76 Volt
Explanation:
frequency, f = 400 Hz
Area of crossection, A = 13 cm²
Maximum flux density, B = 0.9 tesla
Number of turns in secondary coil, N = 70
Let the maximum induced voltage is e.
According to the Faraday's law of electromagnetic induction, the induced emf is equal to the rate of change of magnetic flux.
e = dФ/dt

Time is defined as the reciprocal of frequency.
So, e = N B A f
e = 70 x 0.9 x 13 x 10^-4 x 400
e = 32.76 volt
Answer:
Time required by boat 1 for the round trip is less than that of boat 2.
Hence, boat 1 wins.
Explanation:
Case 1: Boat 1
Speed of boat = 
time = 
While going to another end
time = 
time = 
time = 1 hour
While going back,
time = 
time = 
time = 1 hour
Total time taken by boat 1 is,
Total time by boat 1 = 1 hour + 1 hour = 2 hour
Total time by boat 1 = 2 hour
Total time taken by boat 1 for the round trip is 2 hour.
Case 2: Boat 2
Speed of boat = 
time = 
While going to another end
time = 
time = 
time = 2 hour
While going back,
time = 
time = 
time = 0.66 hour
Total time taken by boat 2 is,
Total time by boat 1 = 2 hour + 0.66 hour
Total time by boat 1 = 2.66 hour
Total time taken by boat 2 for the round trip is 2.66 hour.
Time required by boat 1 for the round trip is less than that of boat 2.
Hence, boat 1 wins.
Answer:
nitrogen
Explanation:
because I also had this in exam and I was correct
Answer:
Work done = 35467.278 J
Explanation:
Given:
Height of the cone = 4m
radius (r) of the cone = 1.2m
Density of the cone = 600kg/m³
Acceleration due to gravity, g = 9.8 m/s²
Now,
The total mass of the cone (m) = Density of the cone × volume of the cone
Volume of the cone = 
thus,
volume of the cone =
= 6.03 m³
therefore, the mass of the cone = 600 Kg/m³ × 6.03 m³ = 3619.11 kg
The center of mass for the cone lies at the
times the total height
thus,
center of mass lies at, h' = 
Now, the work gone (W) against gravity is given as:
W = mgh'
W = 3619.11kg × 9.8 m/s² × 1 = 35467.278 J