Answer is: Both a fluorine atom and a bromine atom gain one electron, and both atoms become stable.
Fluorine and bromine are in group 17 in Periodic table of elements. Group 17 (halogens) elements are in group 17: fluorine (F), chlorine (Cl), bromine (Br) and iodine (I). They are very reactive and easily form many compounds.
Halogens need to gain one electron to have electron cofiguration like next to it noble gas.
Fluorine has atomic number 9, it means it has 9 protons and 9 electrons.
Fluorine tends to have eight electrons in outer shell like neon (noble gas) and gains one electron in chemical reaction.
Electron configuration of fluorine: ₉F 1s² 2s² 2p⁵.
Electron configuration of neon: ₁₀Ne 1s² 2s² 2p⁶.
Assume there is 100g of the substance at first
Answer:
D
Explanation:
D is the answer because 2 is needed to know
Answer:
(1) addition of HBr to 2-methyl-2-pentene
Explanation:
In this case, we will have the formation of a <u>carbocation</u> for each molecule. For molecule 1 we will have a <u>tertiary carbocation</u> and for molecule 2 we will have a <u>secondary carbocation</u>.
Therefore the <u>most stable carbocation</u> is the one produced by the 2-methyl-2-pentene. So, this molecule would react faster than 4-methyl-1-pentene. (See figure)
Answer:
Ammonia gas(an alkaline gas with characteristics of choking or irritating smell) is not liberated when 6mole of HCl is added to the solution instead of 6mole of NaOH, to test for the presence of ammonium ion in the solution
Explanation:
As expected, when testing for ammonium ion in a solution (precisely ammonium salt solution), Sodium Hydroxide (NaOH) is required as the test reagent.
When NaOH is added to the solution, A gas with characteristics of choking or irritating smell is liberated.
This gas turn red litmus paper blue.
This liberated gas is an alkaline gas, which is confirmed as an ammonia gas(NH3).
If HCl is added instead of NaOH, the ammonia gas will not be liberated, which indicates that the test reagent used is wrong.