Answer:
[Ni(CN)4]2- square planar
[NiCl4]2- tetrahedral
Explanation:
For a four coordinate complex such as [Ni(CN)4]2- and [NiCl4]2-, we can decide its geometry by closely considering its magnetic properties. Both of the complexes are d8 complexes which could be found either in the tetrahedral or square planar crystal field depending on the nature of the ligand.
CN^- being a strong field ligand leads to the formation of a square planar diamagnetic d8 complex of Ni^2+. Similarly, Cl^- being a weak field ligand leads to the formation a a tetrahedral paramagnetic d8 complex of Ni^+ hence the answer given above.
In the crystallization process the solid compound is dissolved in the solvent at elevated temperature and the crystallize product obtained by slow cooling of the solution. Here the solubility of acetanilide at 100°C is 1g per 20mL of water. Thus to dissolve 500mg of acetanilide at high temperature that is 100°C we need 10mL of water.
Now at 25°C after the re-crystallization there will be some amount of dissolve acetanilide. Which can be calculated as- 185mL of water is needed to dissolve 1g or 1000mg of acetanilide at 25°C. Thus in 10mL of water there will be
gmg of acetanilide.
Answer:
0.071 is the correct answer using the formula d=m/v
Answer:
This reaction is exothermic because the system shifted to the left on heating.
Explanation:
2NO₂ (g) ⇌ N₂O₄(g)
Reactant => NO₂ (dark brown in color)
Product => N₂O₄ (colorless)
From the question given above, we were told that when the reaction at equilibrium was moved from room temperature to a higher temperature, the mixture turned dark brown in color.
This simply means that the reaction does not like heat. Hence the reaction is exothermic reaction.
Also, we can see that when the temperature was increased, the reaction turned dark brown in color indicating that the increase in the temperature favors the backward reaction (i.e the equilibrium shift to the left) as NO₂ which is the reactant is dark brown in color. This again indicates that the reaction is exothermic because an increase in the temperature of an exothermic reaction will shift the equilibrium position to the left.
Therefore, we can conclude that:
The reaction is exothermic because the system shifted to the left on heating.
Answer:
B) diffraction
Explanation:
A smooth pane of glass does not diffract light. A light passing through a smooth pane of glass may be absorbed, reflected or transmitted.
Diffraction only occurs with special types of glasses embedded with a diffraction grating and are called super prisms. Diffraction glasses use a a gradient lens which is able to separate light into all the colors of the rainbow.
Recall that diffraction is the separation of white light into its component wavelengths.