The shot putter should get out of the way before the ball returns to the launch position.
Assume that the launch height is the reference height of zero.
u = 11.0 m/s, upward launch velocity.
g = 9.8 m/s², acceleration due to gravity.
The time when the ball is at the reference position (of zero) is given by
ut - (1/2)gt² = 0
11t - 0.5*9.8t² = 0
t(11 - 4.9t) = 0
t = 0 or t = 4.9/11 = 0.45 s
t = 0 corresponds to when the ball is launched.
t = 0.45 corresponds to when the ball returns to the launch position.
Answer: 0.45 s
The answer is D. <span> There would be a decrease in the population of marine organisms.
</span>
Answer:
0.358Kg
Explanation:
The potential energy in the spring at full compression = the initial kinetic energy of the bullet/block system
0.5Ke^2 = 0.5Mv^2
0.5(205)(0.35)^2 = 12.56 J = 0.5(M + 0.0115)v^2
Using conservation of momentum between the bullet and the block
0.0115(265) = (M + 0.0115)v
3.0475 = (M + 0.0115)v
v = 3.0475/(M + 0.0115)
plugging into Energy equation
12.56 = 0.5(M + 0.0115)(3.0475)^2/(M + 0.0115)^2
12.56 = 0.5 × 3.0475^2 / ( M + 0.0115 )
12.56 = 0.5 × 9.2872/ M + 0.0115
12.56 = 4.6436/ M + 0.0115
12.56 ( M + 0.0115 ) = 4.6436
12.56M + 0.1444 = 4.6436
12.56M = 4.6436 - 0.1444
12.56 M = 4.4992
M = 4.4992÷12.56
M = 0.358 Kg
Answer:
Explanation:
From the given information:
We know that the thin spherical shell is on a uniform surface which implies that both the inside and outside the charge of the sphere are equal, Then
The volume charge distribution relates to the radial direction at r = R
∴



To find the constant k, we examine the total charge Q which is:


∴



Thus;




Hence, from equation (1), if k = 


To verify the units:

↓ ↓ ↓
c/m³ c/m³ × 1/m
Thus, the units are verified.
The integrated charge Q



since 

Acceleration = force / mass.
A = 100/50 = 2 m/s^2 .