1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oksanka [162]
3 years ago
10

4 points

Physics
1 answer:
zubka84 [21]3 years ago
3 0

(a) 25lx

(b) 11.11lx

<u>Explanation:</u>

Illuminance is inversely proportional to the square of the distance.

So,

I = k\frac{1}{r^2}

where, k is a constant

So,

(a)

If I = 100lx and r₂ = 2r Then,

I_2 = k\frac{1}{(2r)^2}

Dividing both the equation we get

\frac{I_1}{I_2} = \frac{k}{r^2} X\frac{(2r)^2}{k} \\\\\frac{I_1}{I_2} = 4\\\\I_2 = \frac{I_1}{4}\\\\I_2 = \frac{100}{4}  = 25lx

When the distance is doubled then the illumination reduces by one- fourth and becomes 25lx

(b)

If I = 100lx and r₂ = 3r Then,

I_2 = k\frac{1}{(3r)^2}

Dividing equation 1 and 3 we get

\frac{I_1}{I_2} = \frac{k}{r^2} X\frac{(3r)^2}{k} \\\\\frac{I_1}{I_2} = 9\\\\I_2 = \frac{I_1}{9}\\\\I_2 = \frac{100}{9}  = 11.11lx

When the distance is tripled then the illumination reduces by one- ninth and becomes 11.11lx

You might be interested in
Si m1 es 6kg y m2 es 14kg y la masa de la polea es despreciable ¿Cual es la aceleración que adquiere el sistema?
Annette [7]

Answer:

Please transilate

Explanation:

I didn't get it

8 0
3 years ago
A large crate is suspended from the end of a vertical rope. Is the tension in the rope greater when the crate is at rest or when
choli [55]

Answer:

Part a)

the tension force is equal to the weight of the crate

Part b)

tension force is more than the weight of the crate while accelerating upwards

tension force is less than the weight of crate if it is accelerating downwards

Explanation:

Part a)

When large crate is suspended at rest or moving with uniform speed then it is given as

F_t - mg = ma

here since speed is constant or it is at rest

so we will have

a = 0

F_t = mg

so the tension force is equal to the weight of the crate

Part b)

Now let say the crate is accelerating upwards

now we can say

F_t - mg = ma

F_t = mg + ma

so tension force is more than the weight of the crate

Now if the crate is accelerating downwards

F_t - mg = -ma

F_t = mg - ma

so tension force is less than the weight of crate if it is accelerating downwards

4 0
4 years ago
Elabora una tabla, como la del ejemplo, con los resultados obtenidos en los test que desarrollaste en actividades anteriores. Lu
rodikova [14]

Explanation:

Clear rendering reads;

"Make a table, like the one in the example, with the results obtained in the tests you carried out in previous activities. Then answer: What do these results indicate regarding your physical condition and how do they relate to your health? From your answers, consider the challenge of improving your physical condition by maintaining or improving your exercise routine or permanent practice of physical activity".

So the incomplete text above it seems you've been instructed to perform an experiment and then state your result/analysis.

8 0
3 years ago
An ideal spring with spring constant k is hung from the ceiling. The initial length of the spring, with nothing attached to the
hram777 [196]

The mass m of the object = 5.25 kg

<h3>Further explanation</h3>

Given

k = spring constant = 3.5 N/cm

Δx= 30 cm - 15 cm = 15 cm

Required

the mass m

Solution

F=m.g

Hooke's Law

F = k.Δx

\tt m.g=k.\Delta x\\\\m.10=3.5\times 15\\\\m=5.25~kg

7 0
3 years ago
1. A pendulum has a period of 3 seconds. What's its frequency? 2. A pendulum has a frequency of 0.25 Hz. What's its period? 3. A
RideAnS [48]

Answer:

(1) 0.333 Hz

(2) 4 sec

(3) 2 sec, 0.5 Hz

Explanation:

(1) We have given time period of pendulum is 3 sec

So T = 3 sec

Frequency will be equal to f=\frac{1}{T}=\frac{1}{3}=0.333Hz

(2) Frequency of the pendulum is given f = 0.25 Hz

Time period is equal to T=\frac{1}{f}=\frac{1}{0.25}=4sec

(3) It is given that a pendulum makes 10 back and forth swings in 20 seconds

So time taken to complete 1 back and forth swings = =\frac{20}{10}=2sec

So time period T = 2 sec

Frequency will be equal to f=\frac{1}{T}=\frac{1}{2}=0.5Hz

6 0
3 years ago
Read 2 more answers
Other questions:
  • A car is moving down a flat, horizontal highway at a constant speed of 21 m/s when suddenly a rock dropped from rest straight do
    11·1 answer
  • Juliette is driving her car when she sees a cat run across the road. If she is able to stop the car over a distance of 0.025km i
    9·1 answer
  • A car company is testing seatbelts using crash test dummies. The company finds that when cars come to a sudden stop, the crash t
    15·2 answers
  • A roller coaster track is a good example of the law of conservation of energy. Use this law to explain these facts about a rolle
    12·2 answers
  • What is a meniscus and what does it do
    11·1 answer
  • Complete the statement with the correct term. As the size of the nucleus increases, more ___ are needed to maintain the attracti
    10·2 answers
  • You wash the dishes. when you let the water down the drain, where is the water flowing the fastest?
    11·1 answer
  • 4
    8·1 answer
  • As a result of mitosis, the cels of a Molecular organism sure which of these properties select to correct answers. A. All cells
    13·2 answers
  • Which part of the scientific method is most likely to lead to changes in a theory? (1 point)
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!