Answer:
Time, t = 0.23 seconds
Explanation:
It is given that,
Initial speed of the ranger, u = 52 km/h = 14.44 m/s
Final speed of the ranger, v = 0 (as brakes are applied)
Acceleration of the ranger, 
Distance between deer and the vehicle, d = 87 m
Let d' is the distance covered by the deer so that it comes top rest. So,


d' = 26.06 m
Distance between the point where the deer stops and the vehicle is :
D=d-d'
D=87 - 26.06 = 60.94 m
Let t is the maximum reaction time allowed if the ranger is to avoid hitting the deer. It can be calculated as :


t = 0.23 seconds
Hence, this is the required solution.
Answer:
C)The Same
Explanation:
Kinematics equation:

for both cases the initial velocity in the axis Y is the same, equal a zero.
So the relation between the height ant temps is the same for both cases (the horizontal velocity does not play a role)
C)The Same
I'm trying to make an electromagnet that's strength is constantly getting incremented by small amounts every second. I need to know, which would have a greater effect on the electromagnet's strength, amps or volts? (I know increasing the turns and/or density of the magnet wire will increase the strength, but I am looking for answers other than that particular one.)
The vertical velocity of the projectile upon returning to its original is 17. 74 m/s
<h3>
How to determine the vertical velocity</h3>
Using the formula:
Vertical velocity component , Vy = V * sin(α)
Where
V = initial velocity = 36. 6 m/s
α = angle of projectile = 29°
Substitute into the formula
Vy = 36. 6 * sin ( 29°)
Vy = 36. 6 * 0. 4848
Vy = 17. 74 m/s
Thus, the vertical velocity of the projectile upon returning to its original is 17. 74 m/s
Learn more about vertical velocity here:
brainly.com/question/24949996
#SPJ1
Answer:
Bill's motor power: W_B = F x S / T = F x 0.35 / 2= 0.175F
Nageen's motor power: W_N = F x S / T = F x 0.35 / 1.8 = 0.194F
=> 0.194F > 0.175F => Nageen's motor applied more power to the box than Bill's motor.