Answer:
In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time.[1] More specifically, the equations of motion describe the behaviour of a physical system as a set of mathematical functions in terms of dynamic variables. These variables are usually spatial coordinates and time, but may include momentum components. The most general choice are generalized coordinates which can be any convenient variables characteristic of the physical system.[2] The functions are defined in a Euclidean space in classical mechanics, but are replaced by curved spaces in relativity. If the dynamics of a system is known, the equations are the solutions for the differential equations describing the motion of the dynamics.
The magnitude of the average impulsive force imparted to the ball if it is in contact with the bat is 6000 N
The mass of the baseball, m = 0.15 kg
The speed at which it moves, v = 30 m/s
Time at which the baseball was in contact with the bat, t = 0.75 ms
t = 0.75/1000 s
t = 0.00075 s
The impulsive force is given by the formula:

Substitute m = 0.15 kg, v = 30, and t = 0.00075s into the formula above:

The magnitude of the average impulsive force imparted to the ball if it is in contact with the bat is 6000 N
Learn more here: brainly.com/question/25892144
68.6m/s is the answer <span />
I would say A not 100℅ thou