Answer:
1 ohm
Explanation:
since there are two identical resistors, one resistor will be
R =
=2ohm [ proven as in series
]
to calculate the equivalent resistance when in parallel:

so,


Answer:
t = 5.56 ms
Explanation:
Given:-
- The current carried in, Iin = 1.000002 C
- The current carried out, Iout = 1.00000 C
- The radius of sphere, r = 10 cm
Find:-
How long would it take for the sphere to increase in potential by 1000 V?
Solution:-
- The net charge held by the isolated conducting sphere after (t) seconds would be:
qnet = (Iin - Iout)*t
qnet = t*(1.000002 - 1.00000) = 0.000002*t
- The Volt potential on the surface of the conducting sphere according to Coulomb's Law derived result is given by:
V = k*qnet / r
Where, k = 8.99*10^9 ..... Coulomb's constant
qnet = V*r / k
t = 1000*0.1 / (8.99*10^9 * 0.000002)
t = 5.56 ms
Answer:
8 time increase in K.E.
Explanation:
Consider Mass of truck = m kg and speed = v m/s then
K.E. = 1/2 ×mv²
If mass and speed both are doubled i.e let m₀ = 2m and v₀ = 2v then
(K.E.)₀ = 1/2 ×2m(2v)²
(K.E.)₀ = 8 (1/2 × mv²) = 8 × K.E.
The probability of finding an electron with random motion at a certain energy level (distance away from) the nucleus
The relationship between mass and acceleration is an inverse proportionality
Explanation:
The relationship between the acceleration of an object and its mass is given by Newton's second law, which states that:

where
F is the net force on the object
m is its mass
a is its acceleration
From the equation, we notice that if the force on the object is kept constant, then the mass and the acceleration are inversely proportional to each other. This means that:
- If the mass of the object is increased, its acceleration will decrease
- If the mass of the object is decreased, its acceleration will increase
Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly