What do you need help with. I am very good at chemistry.
The time required to reduce the concentration from 0.00757 M to 0.00180 M is equal to 1.52 × 10⁻⁴ s. The half-life period of the reaction is 9.98× 10⁻⁵s.
<h3>What is the rate of reaction?</h3>
The rate of reaction is described as the speed at which reactants are converted into products. A catalyst increases the rate of the reaction without going under any change in the chemical reaction.
Given the initial concentration of the reactant, C₀= 0.00757 M
The concentration of reactant after time t is C₁= 0.00180 M
The rate constant of the reaction, k = 37.9 M⁻¹s⁻¹
For the first-order reaction: 
0.00180 = 0.00757 - (37.9) t
t = 1.52 × 10⁻⁴ s
The half-life period of the reaction: 

Half-life of the reaction = 9.98 × 10⁻⁵s
Learn more about the rate of reaction, here:
brainly.com/question/13571877
#SPJ1
Answer:
0.29mol/L or 0.29moldm⁻³
Explanation:
Given parameters:
Mass of MgSO₄ = 122g
Volume of solution = 3.5L
Molarity is simply the concentration of substances in a solution.
Molarity = number of moles/ Volume
>>>>To calculate the Molarity of MgSO₄ we find the number of moles using the mass of MgSO₄ given.
Number of moles = mass/ molar mass
Molar mass of MgSO₄:
Atomic masses: Mg = 24g
S = 32g
O = 16g
Molar mass of MgSO₄ = [24 + 32 + (16x4)]g/mol
= (24 + 32 + 64)g/mol
= 120g/mol
Number of moles = 122/120 = 1.02mol
>>>> From the given number of moles we can evaluate the Molarity using this equation:
Molarity = number of moles/ Volume
Molarity of MgSO₄ = 1.02mol/3.5L
= 0.29mol/L
IL = 1dm³
The Molarity of MgSO₄ = 0.29moldm⁻³
An acid is deemed strong if it can readily or easy "donate" a proton (H+) to the other ions in the solutions. Also, to donate or lose the proton or H+, the acid must dissociate (split into ions) in the solution. The more it can readily dissociate, the stronger the acid is.