Answer:
a. 
b. 
c. 
Explanation:
First, look at the picture to understand the problem before to solve it.
a. d1 = 1.1 mm
Here, the point is located inside the cilinder, just between the wire and the inner layer of the conductor. Therefore, we only consider the wire's current to calculate the magnetic field as follows:
To solve the equations we have to convert all units to those of the international system. (mm→m)

μ0 is the constant of proportionality
μ0=4πX10^-7 N*s2/c^2
b. d2=3.6 mm
Here, the point is located in the surface of the cilinder. Therefore, we have to consider the current density of the conductor to calculate the magnetic field as follows:
J: current density
c: outer radius
b: inner radius
The cilinder's current is negative, as it goes on opposite direction than the wire's current.




c. d3=7.4 mm
Here, the point is located out of the cilinder. Therefore, we have to consider both, the conductor's current and the wire's current as follows:

As we see, the magnitud of the magnetic field is greater inside the conductor, because of the density of current and the material's nature.
The time required for a moon to orbit around the earth is about 27-28 days
In order for lunar eclipse to occur the line that should be formed is:
Sun-Earth-Moon
because earth is making shade on moon
in order for solar eclipse to occur the line is now:
Sun-Moon-Earth
because moon is making a shade on earth (blocking sun = solar eclipse)
Therefore moon needs to make half of its orbit to go from behind the earth to in front of the earth.
28/2 = 14
Answer is 14
Refer to the diagram shown below.
W₁ = (4 kg)*(9.8 m/s²) = 39.2 N
W₂ = (1 kg)*(9.8 m/s²) = 9.8 N
The normal reaction on the 4-kg mass is
N = (39.2 N)*cos(25°) = 35.5273 N
The force acting down the inclined plane due to the weight is
F = (39.2 N)*sin(25°) = 16.5666 N
The net force that accelerates the 4-kg mass at a m/²s down the plane is
F - W₂ = (4 kg)*(a m/s²)
4a = 16.5666 - 9.8
a = 1.6917 m/s²
Answer: 1.69 m/s² (nearest hundredth)
<span>the overload principle hope this helps
</span>