Refer to the diagram shown below.
In this analysis, wind resistance is ignored, and g = 9.8 m/s².
The meat falls with zero vertical velocity, therefore the time, t, before the meat hits the ground is

If the fox catches the meat before it hits the ground, then the fox should travel a horizontal distance d in the same time that the meat travels a horizontal distance (7 -d).
The meat travels a distance of
7 - d = (1.2 m/s)*(1.75 s) = 2.1 m
or
d = 4.9 m
Let v = velocity of the fox when it catches the meat.
If the acceleration of the fox is a m/s², then
v = 1.75a
Also,

Answer: 2.37 m/s (nearest hundredth)
Answer:
Magnitude of the net force acting on the kayak = 39.61 N
Explanation:
Considering motion of kayak:-
Initial velocity, u = 0 m/s
Distance , s = 0.40 m
Final velocity, v = 0.65 m/s
We have equation of motion v² = u² + 2as
Substituting
v² = u² + 2as
0.65² = 0² + 2 x a x 0.4
a = 0.53 m/s²
We have force, F = ma
Mass, m = 75 kg
F = ma = 75 x 0.53 = 39.61 N
Magnitude of the net force acting on the kayak = 39.61 N
C isotopes is the correct answer. Isotopes are variants of a particular chemical element which differ in neutron number, and consequently in nucleon number.All isotopes of a given element have the same number of protons but different numbers of neutrons in each atom.
Hope this helps! :)
Answer:
0.2 m/s
Explanation:
given,
mass of astronaut, M = 85 Kg
mass of hammer, m = 1 Kg
velocity of hammer , v =17 m/s
speed of astronaut, v' = ?
initial speed of the astronaut and the hammer be equal to zero = ?
Using conservation of momentum
(M + m) V = M v' + m v
(M + m) x 0 = 85 x v' + 1 x 17
85 v' = -17
v' = -0.2 m/s
negative sign represent the astronaut is moving in opposite direction of hammer.
Hence, the speed of the astronaut is equal to 0.2 m/s
Answer:
Hope you like it
Explanation:
Microscopes make small things appear larger. C: Hans and Zacharias Janssen created the first microscope. and D: A lens is a transparent material that helps show the details of things observed.