PH = pKa + log
![\frac{[base]}{[Acid]}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5Bbase%5D%7D%7B%5BAcid%5D%7D%20)
Acid is HC₂H₃O₂ and conjugate base is KC₂H₃O₂,
pKa = - log Ka = - log (1.8 x 10⁻⁵) = 4.74
so pH = 4.74 + log (0.2/0.2) = 4.74
This is called maximum buffer capacity (when acid conc. and base conc. are equal) the pH = pKa in this case
<span>4 I</span>₂<span>+ 9 O</span>₂<span> = 2 I</span>₄<span>O</span>₉
Reactants :
I₂ , O₂
Products :
I₄O₉
hope this helps!
Answer:
25.2°C
Explanation:
Given parameters:
Energy applied to the water = 1000J
Mass of water = 50g
Final temperature = 30°C
Unknown:
Initial temperature = ?
Solution:
To solve this problem, we use the expression below:
H = m c Ф
H is the energy absorbed
m is the mass
c is the specific heat capacity
Ф is the change in temperature
1000 = 50 x 4.184 x (30 - initial temperature )
1000 = 209.2(30 - initial temperature)
4.78 = 30 - initial temperature
4.78 - 30 = - initial temperature
Initial temperature = 25.2°C
Because of the strong attractions between polar water molecules.
SOLVENT- A substance (usually a liquid) capable of dissolving one or more pure substances. SOLUTE- Solid, liquid or gas that is dissolved in a solvent. SOLUTION- A homogeneous (looks the same throughout) mixture of a solvent and one or more solutes. AQUEOUS SOLUTION- Solution in which water is the solvent.
Answer
it raises the boiling point substance is dissolved in water