Answer:
4054 kcal of heat is released during complete combustion of 354 g of octane.
Explanation:
Heat of combustion of 1 mol of octane is
kcal
Molar mass of octane = 114.23 g/mol
We know, no. of moles = (mass)/(molar mass)
So,
kcal of heat is released during complete combustion of 114.23 g of octane.
So, amount of heat is released during complete combustion of 354 g of octane =
kcal = 4054 kcal
Hence 4054 kcal of heat is released during complete combustion of 354 g of octane.
1) 7.15 * 10^6
since the exponent of the scientific notation is positive, move 6 places to the right.
so, <em>7.15 * 10^6 = 7150000</em>
2) 3.03 * 10^-8
Since the exponent of the scientific notation is negative, move the decimal point 8 places to the left.
so,<em> 3.03 * 10^-8 = 0.0000000303</em>
<em />
3)<em> </em>4.9 * 10^-1
since the exponent of the scientific notation is negative, move 1 decimal place to the left.
so,<em> 4.9 * 10^-1 = 0.49</em>
<em />
4) 2.886 * 10^5
since the exponent of the scientific notation is positive, move 5 decimal places to the right.
so,<em> 2.886 * 10^5 = 288600</em>
Answer : The partial pressure of
and
is, 216.5 mmHg and 649.5 mmHg
Explanation :
According to the Dalton's Law, the partial pressure exerted by component 'i' in a gas mixture is equal to the product of the mole fraction of the component and the total pressure.
Formula used :


So,

where,
= partial pressure of gas
= mole fraction of gas
= total pressure of gas
= moles of gas
= total moles of gas
The balanced decomposition of ammonia reaction will be:

Now we have to determine the partial pressure of
and 

Given:


and,

Given:


Thus, the partial pressure of
and
is, 216.5 mmHg and 649.5 mmHg
Answer: an invisible line around which an object rotates, or spins.
Explanation: //Give thanks(and or Brainliest) if helpful (≧▽≦)//
Answer:
B)Continents look like they fit together