Answer:
275.3 nm is the wavelength of light required for mercury.
Mercury can not be used to generate electricity from the sun because wavelength at which mercury will emit an electron is smaller than 500 nm.
Explanation:
The wavelength of light required for mercury to emit an electron.
The wavelength of the radiation = 
Energy required fro mercury to to emit an electron = E
Energy required fro mercury to to emit an electron will the energy if the radiation = E' = 
E' = E
To calculate the wavelength of light, we use the equation:
where,
= wavelength of the light
h = Planck's constant = 
c = speed of light =



Wavelength of the sun light in the visible region = 500 nm
500 nm > 275.3 nm

Less energy < more energy
So, this means that mercury can not be used to generate electricity from the sun.
I have attached the picture ot the H<span>aworth structure of glucose.
You can count in total 6 carbon atoms but only 5 are in the ring portion of the structure.
Therefore, the answer is 5.
</span>
<span>Mass of CH2 = 12 + 2 = 14 g/mol
The number of CH2s there are.
So since the total mass is 84.2 g/mol.
The solution is
84.2/14 = 6.012 thus the answer is 6
There are 6(CH2)
So the molecular formula is C6H12</span>
Answer:
2m/s²
Explanation:
When an object starts or at its state of rest it has an Initial speed U = 0
Final speed = 6m/s
total time taken for the acceleration = 3s
Acceleration =?
Acceleration is the change in velocity (speed) with time
OR
Time rate of change of velocity
Acceleration = <u>Change in Speed(velocity)</u>
Time taken
Hence,
Acceleration = <u> </u><u> </u><u>V - </u><u>U</u><u> </u><u> </u>
t
a = <u>6</u><u> </u><u>-</u><u> </u><u>0</u>
3
a = <u>6</u><u> </u><u> </u>
3
a = 2m/s²
The size v=masse/density
v= 4*pi*R^3
R=(3*masse/(4*pi*density))^(1/3)
R=1.9695 cm