The Answer is C
<span> It can be separated by physical means and is uniform in composition.</span>
Answer:
The electrophile is the hydroxide free radical
Explanation:
The hydroxylation of benzene and benzene derivatives using hydrogen peroxide proceeds in the presence of an acidic catalyst. The electrophile in this reaction is the hydroxyl free radical generated in an initial step of the reaction.
This is actually a free radical reaction. The hydroxyl radical previously generated reacts with the benzene ring to yield a radical that undergoes further rearrangement to yield the product phenol. The intermediate, shown as part of this reaction mechanism (refer to image attached) is a specie in which the odd electron is delocalized over the entire benzene ring. Loss of a proton completes the reaction mechanism yielding the corresponding phenol.
You need to use the % information to determine the empirical formula of the compound first.
The empirical formula is the simplest ratio of atoms in the molecule.
Then use the rest of the data to determine moles of gas, and use this to determine molar mass of gas...
Empirical formula calculations:
Assume you have 100 g, calculate the moles of each atom in the 100 g
moles = mass / molar mass
molar mass C = 12.01 g/mol
molar mass H = 1.008 g/mol
molar mass O = 16.00 g/mol
C = 64.9 % = 64.6 g
H = 13.5 % = 13.5 g
O = 21.6 % = 21.6 g
moles C = 64.6 g / 12.01 g/mol = 5.38 mol
moles H = 13.5 g / 1.008 g/mol = 13.39 mol
moles O = 21.6 g / 16.00 g/mol = 1.35 mol
So ratio of C : H : O
is 5.38 mol : 13.39 mol : 1.35 mol
Divide each number in the ratio by the lowest number to get the simplest whole number ratio
(5.38 / 1.35) : (13.39 / 1.35) : (1.35 / 1.35)
4 : 10 : 1
empirical formula is
C4H10O
Finding moles and molar mass calcs
Now, you know that at 120 deg C and 750 mmHg that 1.00L compound weighs 2.30 g.
We can use this information to determine the molar mass of the gas after first working out how many moles the are in the 1.00 L
PV = nRT
P = pressure = 750 mmHg
V = volume = 1.00 L
n = moles (unknown)
T = temp in Kelvin (120 deg C = (273.15 + 120) Kelvin)
- T = 393.15 Kelvin
R = gas constant, which is 62.363 mmHg L K^-1 mol^-1 (when your P is in mmHg and volume is in L)
n = PV / RT
n = (750 mmHg x 1.00 L) / (62.363mmHg L K^-1 mol^-1 x 393.15 K)
n = 0.03059 moles of gas
We know moles = 0.03509 and mass = 2.30 g
So we can work out molar mass of the gas
moles = mass / molar mass
Therefore molar mass = mass / moles
molar mass = 2.30 g / 0.03059 mol
= 75.19 g/mol
Determine molecular formula
So empirical formula is C4H10O
molar mass = 75.19 g/mol
To find the molecular formula you divide the molar mass by the formula weight of the empirical formula...
This tells you how many times the empirical formula fits into the molecular formula. Tou then multiply every atom in the empirical formula by this number
formula weight C4H10O = 74.12 g/mol
Divide molar mass by formula weight empirical
75.15 g/mol / 74.12 g/mol
= 1
(It doesn't matter that the number don't quite match, they rarely do in this type of calc (although I could have made a slight error somewhere) but the numbers are very close, so we can say 1.)
The empirical formula only fits into the molar mass once,
molecular formula thus = empirical formula
<span>
C4H10O
Therefore, the </span>molecular formula of the compound is <span>C4H10O.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!</span>
To know this, we look at the family numbers
I’m family 14, we know that each atom has 4 electrons
In family 14 there are the atoms:
Carbon
Silicon
Germanium
Tin
Lead
2 C₁₇H₁₉NO₃ + H₂SO₄ → Product
Moles of H₂SO₄ = M x V(liters) = 0.0116 x 8.91/1000 = 1.033 x 10⁻⁴ mole
moles of morphine = 2 x moles of H₂SO₄ = 2.066 x 10⁻⁴
Mass of morphine = moles x molar mass of morphine = 2.066 x 10⁻⁴ x 285.34
= 0.059 g
percent morphine =

=

= 8.6 %