Gravitational force is much weaker, because it is the force of gravity, or the force that makes smaller objects be pulled towards a much bigger one with a certain amount of force.
Now strong nuclear force, which is very strong, keeps the atomic particles in an atom from separating, and the reason it is so powerful is because the particles in an atom repel each other and this force keeps them from doing .that
<span>You use the Henderson - Hasselbalch equation
pH = pKa + log ([salt]/[acid])
pKa = -log (8.2*10^-5) = 4.081
pH = 4.081 + (0.590/0.190)
pH = 4.081 + log 3.105
pH = 4.081 + 0.49206
pH = 4.573</span>
Answer:
The reason why atomic mass is usually not a whole number is because it is a weighted average of the mass numbers of isotopes
Explanation:
where is the diagram?
without the diagram i can't help
Answer:
(a) The equilibrium partial pressure of BrCl (g) will be greater than 2.00 atm.
Explanation:
Q is the coefficient of the reaction and is calculated the same of the way of the equilibrium constant, but using the concentrations or partial pressures in any moment of the reaction, so, for the reaction given:
Q = (pBrCl)²/(pBr₂*pCl₂)
Q = 2²/(1x1)
Q = 4
As Q < Kp, the reaction didn't reach the equilibrium, and the value must increase. As we can notice by the equation, Q is directly proportional to the partial pressure of BrCl, so it must increase, and be greater than 2.00 atm in the equilibrium.
The partial pressures of Br₂ and Cl₂ must decrease, so they will be smaller than 1.00 atm. And the total pressure must not change because of the stoichiometry of the reaction: there are 2 moles of the gas reactants for 2 moles of the gas products.
Because is a reversible reaction, it will not go to completion, it will reach an equilibrium, and as discussed above, the partial pressures will change.